OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Characterization of light collection through a subwavelength aperture from a point source

Xin Heng, Xiquan Cui, David W. Knapp, Jigang Wu, Zahid Yaqoob, Emily J. McDowell, Demetri Psaltis, and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 14, Issue 22, pp. 10410-10425 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally measure and theoretically model the light transmission characteristics of subwavelength apertures. The characterization consists of translating a point source at varying vertical height and lateral displacement from the aperture and measuring the resulting transmission. We define the variation of the transmission with lateral source displacement as the collection mode point spread function (CPSF). This transmission geometry is particularly relevant to subwavelength aperture based imaging devices and enables determination of their resolution. This study shows that the achieved resolutions degrade as a function of sample height and that the behavior of sensor devices based on the use of apertures for detection is different from those devices where the apertures are used as light sources. In addition, we find that the measured CPSF is dependent on the collection numerical aperture (NA). Finally, we establish that resolution beyond the diffraction limit for a nominal optical wavelength of 650 nm and nominal medium refractive index of 1.5 is achievable with subwavelength aperture based devices when the aperture size is smaller than 225 nm.

© 2006 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(130.0130) Integrated optics : Integrated optics
(170.5810) Medical optics and biotechnology : Scanning microscopy

ToC Category:
Imaging Systems

Original Manuscript: August 22, 2006
Revised Manuscript: October 18, 2006
Manuscript Accepted: October 20, 2006
Published: October 30, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Xin Heng, Xiquan Cui, David W. Knapp, Jigang Wu, Zahid Yaqoob, Emily J. McDowell, Demetri Psaltis, and Changhuei Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410-10425 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Popov, M. Neviere, P. Boyer and N. Bonod, "Light transmission through a subwavelength hole," Opt. Commun. 255, 338-348, (2005). [CrossRef]
  2. E. X. Jin and X. F. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, (2005). [CrossRef]
  3. X. L. Shi, L. Hesselink and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322, (2003). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822, (2002). [CrossRef] [PubMed]
  5. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651, (2004). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669, (1998). [CrossRef]
  7. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686, (2003). [CrossRef] [PubMed]
  8. J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger and T. W. Ebbesen, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044, (2005). [CrossRef] [PubMed]
  9. A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815, (2004). [CrossRef]
  10. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester and J. H. J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517, (1999). [CrossRef]
  11. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247, (2003). [CrossRef]
  12. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360, (2006). [CrossRef] [PubMed]
  13. J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke and E. C. Cox, "Near-field scanner for moving molecules," Phys. Rev. Lett. 86, 1378-1381, (2001). [CrossRef] [PubMed]
  14. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab on a Chip 6, 1274 - 1276, (2006).
  15. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems, San Diego: Academic Press, 1996.
  16. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proceedings of the National Academy of Sciences of the United States of America 102, 13081-13086, (2005).
  17. S. W. Hell and J. Wichmann, "Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy," Opt. Lett. 19, 780-782, (1994). [CrossRef] [PubMed]
  18. D. P. Tsai, A. Othonos, M. Moskovits and D. Uttamchandani, "Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture," Appl. Phys. Lett. 64, 1768-1770, (1994). [CrossRef]
  19. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537, (1999). [CrossRef]
  20. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, "Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale," Science 251, 1468-1470, (1991). [CrossRef] [PubMed]
  21. D. Courjon, Near-field microscopy and near-field optics, London: Imperial College Press, 2003.
  22. S. Inoue and K. R. Spring, Video microscopy: the fundamentals, (2nd edition, New York : Plenum Press, 1997). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier optics, (3rd edition, New York : McGraw-Hill, 2004).
  24. L. G. Schulz and F. R. Tangherlini, "Optical Constants of Silver, Gold, Copper, and Aluminum.2. the Index of Refraction-N," J. Opt. Soc. Am. 44, 362-368, (1954). [CrossRef]
  25. L. G. Schulz, "The Optical Constants of Silver, Gold, Copper, and Aluminum.1. the Absorption Coefficient-K," J. Opt. Soc. Am. 44, 357-362, (1954). [CrossRef]
  26. E. Grupp, H. J. Lezec, T. Thio and T. W. Ebbesen, "Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture," Adv. Mater. 11, 860-862, (1999). [CrossRef]
  27. COMSOL Multiphysics 3.2 (2006), COMSOL Inc. (http://www.comsol.com/).
  28. N. N. Rao, Elements of engineering electromagnetics (6th edition, Upper Saddle River, N.J. : Pearson Prentice Hall, 2004.
  29. J. P. Berenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 127, 363-379, (1996). [CrossRef]
  30. J. Jin, The finite element method in electromagnetics (2nd edition, New York: Wiley, 2002.
  31. F. Collino and P. Monk, "The perfectly matched layer in curvilinear coordinates," SIAM Journal on Scientific Computing 19, 2061-2090, (1998). [CrossRef]
  32. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag. 44, 1630-1639, (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited