OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution

Timothy McGarvey, André Conjusteau, and Hideo Mabuchi  »View Author Affiliations

Optics Express, Vol. 14, Issue 22, pp. 10441-10451 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a ‘wet mirror’ apparatus for cw cavity-enhanced absorption measurements with Bacteriochlorophyll a (BChla) in solution and show that it achieves the full sensitivity gain (≈ 2.3 × 104) afforded by the finesse (3.4 × 104) and loss distribution of our optical resonator. This result provides an important proof-of-principle demonstration for solution-phase cavity-enhanced spectroscopy; straightforward extrapolation to a system with state-of-the-art low-loss mirrors and shot-noise-limited performance indicates that single molecule sensitivity in liquids is within reach of current technology. With the probe laser locked to the cavity resonance, our instrument achieves a sensitivity ≈ 3.4 × 10-8/√Hz (for a sample of length 1.75 mm) with 100 kHz bandwidth and can reliably detect sub-nM concentrations of BChla with 1 ms integration time.

© 2006 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 5, 2006
Revised Manuscript: October 12, 2006
Manuscript Accepted: October 20, 2006
Published: October 30, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Timothy McGarvey, André Conjusteau, and Hideo Mabuchi, "Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution," Opt. Express 14, 10441-10451 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Kunz, "Optimizing integrated optical chips for label-free (bio)chemical sensing," Anal. Bioanal. Chem. 384, 180-190 (2006);N. Kinrot and M. Nathan, "Investigation of a Periodically-Segmented Waveguide Fabry- Pérot Interferometer for Use as a Chemical/Biosensor," J. Lightwave Technol. 24, 2139-2145 (2006). [CrossRef]
  2. A. J. Hallock, E. Berman and R. N. Zare, "Ultratrace Kinetic Measurements of the Reduction of Methylene Blue," J. Am. Chem. Soc. 125, 1158-1159 (2003). [CrossRef] [PubMed]
  3. J. Ye, L.-S. Ma and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  4. A. C. R. Pipino, "Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy," Appl. Opt. 39, 1449-1453 (2000). [CrossRef]
  5. J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman and L. Maleki, "High-Q whispering-gallery mode sensor in liquids," Proc. SPIE 4629, 172-180 (2002). [CrossRef]
  6. L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer and W. Ubachs, "Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity" Anal. Chim. Acta 558, 2-6 (2006). [CrossRef]
  7. S. Xu, G. Sha and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002). [CrossRef]
  8. K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders and B. A. Paldus, "Moving beyond Traditional UVVisible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC," Anal. Chem. 77, 1177-1182 (2005). [CrossRef] [PubMed]
  9. S. E. Fiedler, A. Hese and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005). [CrossRef]
  10. M. E. Long, R. L. Swofford and A. C. Albrecht, "Thermal Lens Technique — New Method of Absorption Spectroscopy," Science 191, 183-185 (1976). [CrossRef] [PubMed]
  11. C. K. N. Patel and A. C. Tam, "Pulsed optoacoustic spectroscopy of condensed matter," Rev. Mod. Phys. 53, 517-550 (1981). [CrossRef]
  12. F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez and L. M. Lechuga, "Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing," J. Micromech. Microeng. 16, 1006-1016 (2006). [CrossRef]
  13. I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon and A. Scherz, "Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water," Photochem. Photobiol. 72, 204-209 (2000);J. S. Connolly, E. B. Samuel and A. F. Janzen, "Effects of solvent on the fluorescence properties of bacteriochlorophyll a," Photochem. Photobiol. 36, 565-574 (1982). [CrossRef] [PubMed]
  14. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada and T. Kitamori, "Determination of Subyoctomole Amounts of NonfluorescentMolecules Using a Thermal LensMicroscope: Subsingle-Molecule Determination," Anal. Chem. 73, 2112-2116 (2001). [CrossRef] [PubMed]
  15. H. Mabuchi, J. Ye and H. J. Kimble, "Full observation of single-atom dynamics in cavity QED," Appl. Phys. B 68, 1095-1108 (1999). [CrossRef]
  16. A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).
  17. G. Rempe, R. J. Thompson, H. J. Kimble and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  18. A. M. van Oijen, M. Ketelaars, J. K¨ohler, T. J. Aartsma and J. Schmidt, "Spectroscopy of Individual Light- Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band," Biophys. J. 78, 1570-1577 (2000). [CrossRef] [PubMed]
  19. H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang and E. C. Benck, "Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity and spatial resolution," Appl. Opt. 31, 2669-2677 (1992). [CrossRef] [PubMed]
  20. E. D. Black, I. S. Grudinin, S. R. Rao and K. G. Libbrecht, "Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator," J. Appl. Phys. 95, 7655-7659 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited