OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging

Aymeric Leray and Jerome Mertz  »View Author Affiliations

Optics Express, Vol. 14, Issue 22, pp. 10565-10573 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple and robust way to reject out-of-focus background when performing deep two-photon excited fluorescence (TPEF) imaging in thick tissue. The technique is based on the use of a deformable mirror (DM) to introduce illumination aberrations that preferentially degrade TPEF signal while leaving TPEF background relatively unchanged. A subtraction of aberrated from unaberrated images leads to background rejection. We present a heuristic description of our technique, which we corroborate with experiment. An added benefit of our technique is that it leads to somewhat improved image resolution.

© 2006 Optical Society of America

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 29, 2006
Revised Manuscript: October 17, 2006
Manuscript Accepted: October 20, 2006
Published: October 30, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Aymeric Leray and Jerome Mertz, "Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging," Opt. Express 14, 10565-10573 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler,W.W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Meth. 2, 932-940 (2005). [CrossRef]
  3. K. Svoboda and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50, 823-829 (2006). [CrossRef] [PubMed]
  4. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, "Two-photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001). [CrossRef]
  5. E. Beaurepaire and J. Mertz, "Epi-fluorescence collection in two-photon microscopy," Appl. Opt. 41, 5376-5382 (2002). [CrossRef] [PubMed]
  6. E. Beaurepaire, M. Oheim, J. Mertz "Ultra-deep two-photon fluorescence excitation in turbid media," Opt. Commun. 188, 25-29 (2001). [CrossRef]
  7. P. Theer,M. T. Hasan,W. Denk, "Two-photon imaging to a depth of 1000?min living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003). [CrossRef] [PubMed]
  8. J. Ying, F. Liu, R. R. Alfano, "Spatial distribution of two-photon-excited fluorescence in scattering media," Appl. Opt. 38, 224-229 (1999). [CrossRef]
  9. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, "Adaptive aberration correction in a two-photon microscope", J. Microsc. 200, 105-108 (2000). [CrossRef] [PubMed]
  10. P. Marsh, D. Burns, J. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy", Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  11. D. Oron and Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Express 13, 9903-9908 (2005). [CrossRef] [PubMed]
  12. G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Express 13, 2153-2159 (2005). [CrossRef] [PubMed]
  13. E. Tal, D. Oron, Y. Silberberg "Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing," Opt. Lett. 30, 1686-1688 (2005). [CrossRef] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).
  15. C. W. McCutchen, "Generalized aperture and the three-dimensional diffraction image," J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  16. B. R. Frieden, "Optical transfer of the three-dimensional object," J. Opt. Soc. Am. 57, 56-66 (1967). [CrossRef]
  17. J.W. Goodman, Introduction to Fourier Optics, Roberts & Company Publishers, Greenwood Village, CO (2005).
  18. J. Mertz, C. Xu, W. W. Webb, "Single-molecule detection by two-photon-excited fluorescence," Opt. Lett. 20, 2532-2534 (1995). [CrossRef] [PubMed]
  19. J. Perreault, T. G. Bifano, B. Martin Levine,M. N. Horenstein, "Adaptive optic correction using microelectromechanical deformable mirrors," Opt. Eng. 41, 561-566 (2002) [CrossRef]
  20. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, T. M. Jovin, "Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes," Micron 34, 293-300 (2003). [CrossRef] [PubMed]
  21. E. Frumker, D. Oron, D. Mandelik, Y. Silberberg, "Femtosecond pulse-shape modulation at kilohertz rates," Opt. Lett. 29, 890-892 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited