OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Simulation of near-field scanning optical microscopy using a plasmonic gap probe

Kazuo Tanaka, Masahiro Tanaka, and Kiyofumi Katayama  »View Author Affiliations

Optics Express, Vol. 14, Issue 22, pp. 10603-10613 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging by near-field scanning optical microscopy (NSOM) with a plasmonic gap probe (PGP) is simulated to confirm the operation of the recently proposed PGP. The simulations demonstrate that the probe works in illumination, collection-reflection and collection mode, and that is it not necessary to vibrate the probe tip in order to remove background noise. The resolution of the scanned image is also shown to be approximately equal to the diameter of the probe tip. Furthermore, the throughput of the probe is much higher than conventional aperture probes providing similar resolution. The proposed probe thus has the advantages of both aperture probes and scattering probes, and is expected to have excellent characteristics for use as a scanning probe for NSOM.

© 2006 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: July 5, 2006
Revised Manuscript: September 25, 2006
Manuscript Accepted: September 30, 2006
Published: October 30, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Kazuo Tanaka, Masahiro Tanaka, and Kiyofumi Katayama, "Simulation of near-field scanning optical microscopy using a plasmonic gap probe," Opt. Express 14, 10603-10613 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip-probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005). [CrossRef]
  2. K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006). [CrossRef] [PubMed]
  3. C. Girard, A. Dereux, and O. J. F. Martin, "Importance of confined fields in near-field optical imaging of subwavelength objects," Phys. Rev. B 50, 14467-14473 (1994). [CrossRef]
  4. M. Xiao, "Theoretical treatment for scattering scanning near-field optical microscopy," J. Opt. Soc. Am. A 14, 2977-2984 (1997). [CrossRef]
  5. S. I. Bozhevolnyi, M. Xiao, and J. M. Hvan, "Polarization-resolved imaging with a reflection near-field optical microscope," J. Opt. Soc. Am. A 16, 2649-2657 (1999). [CrossRef]
  6. T. Setala, M. Kaivola, and A. T. Friberg, "Evanescent and propagating electromagnetic fields in scattering from point-dipole structure," J. Opt. Soc. Am. A 18, 678-688 (2001). [CrossRef]
  7. K. Tanaka, M. Yan, and M. Tanaka, "A simulation of near field optics by three dimensional volume integral equation of classical electromagnetic theory," Opt. Rev. 8, 43-53 (2001). [CrossRef]
  8. G. von Freymann, T. Schimmel, and M. Wegener, "Computer simulations on near-field scanning optical microscopy: Can subwavelength resolution be obtained using uncoated optical fiber probe?" Appl. Phys. Lett. 73, 1170-1172 (1998). [CrossRef]
  9. Y. Sasaki and H. Sasaki, "Probe design optimization for a high-resolution scattering-type scanning near-field optical microscope," J. Microscopy 202, 347-350 (2001). [CrossRef]
  10. K. Tanaka and M. Tanaka, "Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton," J. Microscopy 210, 294-300 (2003). [CrossRef]
  11. K. Tanaka and M. Tanaka, "Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size," Opt. Comm. 233, 231-244 (2004). [CrossRef]
  12. P. Zwamborn and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech. 40, 1757-1766 (1992). [CrossRef]
  13. R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, (Society for Industrial and Applied Mathematics, New York, 1994). [CrossRef]
  14. E. K. Miller, L. Medgyesi-Mitschnag, and E. H. Newsman, ed., Computational Electromagnetics Frequency-Domain Method of Moments, (The Institute of Electrical and Electronics Engineers, 1992).
  15. G. S. Smith, An introduction to classical electromagnetic radiation (Cambridge Uni. Press, 1997).
  16. M. Ohtsu, ed., Near-field Nano/Atom Optics and Technology, (Springer-Verlag, Tokyo, 1998), Chap. 4. [CrossRef]
  17. S. Kawata, M. Ohtsu, and M. Irie, eds., Nano-Optics, (Springer- Verlag, Berlin Heidelberg, 2002), Chap. 5.
  18. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, "High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115-3117 (1998). [CrossRef]
  19. M. Ohtsu, ed., Near-field Nano/Atom Optics and Technology, (Springer-Verlag, Tokyo, 1998) Chap. 2. [CrossRef]
  20. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995). [CrossRef] [PubMed]
  21. Y. Inoue and S. Kawata, "A scanning near-field optical microscope having scanning electron tunneling microscope capability using a single metallic probe tip," J. Microscopy 178, 14-19 (1994). [CrossRef]
  22. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-enhanced fluorescent microscopy at 10 nanometer resolution," Phys. Rev. Lett. 93, 18080 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited