OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Femtosecond fabricated photomasks for fabrication of microfluidic devices

Daniel Day and Min Gu  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10753-10758 (2006)
http://dx.doi.org/10.1364/OE.14.010753


View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes the direct write laser fabrication of a photolithography mask for prototyping of microfluidic devices in polydimethylsiloxane. An amplified femtosecond pulse laser is used to selectively remove the aluminium metal layer from the poly(methyl methacrylate) photomask substrate. The use of a femtosecond pulse laser to selectively etch a metal layer has several advantages over other conventional methods for binary photomask fabrication, namely rapid prototyping of microfluidic devices using soft lightography. Control of the energy density and defocus position of the focusing objective lens results in the etching of features with widths ranging from 2 μm to 35 μm when using an objective lens with a numerical aperture of 0.25.

© 2006 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 19, 2006
Revised Manuscript: October 17, 2006
Manuscript Accepted: October 18, 2006
Published: October 30, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Daniel Day and Min Gu, "Femtosecond fabricated photomasks for fabrication of microfluidic devices," Opt. Express 14, 10753-10758 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-22-10753


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).
  2. S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005). [CrossRef]
  3. S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).
  4. D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998). [CrossRef] [PubMed]
  5. D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999). [CrossRef]
  6. D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).
  7. D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003). [CrossRef] [PubMed]
  8. D. Day and M. Gu, "Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses," Opt. Express 13, 5939-5946 (2005). [CrossRef] [PubMed]
  9. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000). [CrossRef]
  10. S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003). [CrossRef]
  11. D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003). [CrossRef]
  12. C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004). [CrossRef]
  13. M. S. Giridhar, K. Seong, A. Shulzgen, P. Khulbe, N. Peyghambarian and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with applications to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004). [CrossRef] [PubMed]
  14. I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005). [CrossRef]
  15. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  16. D. Day and M. Gu, "Formation of voids in doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002). [CrossRef]
  17. M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003). [CrossRef]
  18. M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003). [CrossRef]
  19. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii and Y. Jiang, "Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses," Opt. Lett. 26, 1912-1914 (2001). [CrossRef]
  20. K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002). [CrossRef]
  21. K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002). [CrossRef]
  22. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited