OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 12 — Dec. 18, 2006

Simulations of atomic resolution tip-enhanced optical microscopy

Andrew Downes, Donald Salter, and Alistair Elfick  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11324-11329 (2006)
http://dx.doi.org/10.1364/OE.14.011324


View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical techniques can access a wealth of information but traditionally their resolution has been restricted by the diffraction limit. Near-field techniques, which used nanoscale apertures or nanotip electric field enhancement, have succeeded in circumventing Abbe’s law. We show that atomic resolution is theoretically achievable for tip enhanced optical microscopy. Using finite element analysis of the electromagnetic field around a small radius metallic scanning probe microscopy tip, we modelled various tip radii and materials, and an aqueous environment as well as ambient air. For a 1 nm gold tip we predict a strong red shift, and surprisingly high values for the enhancement of the intensity of scattered light – over 107. For this tip, we predict that 0.2 nm lateral resolution in optical imaging is achievable – good enough to resolve individual atomic bonds. The promise of optical data at these spatial scales offers great potential for nanometrology and nanotechnology applications.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 18, 2006
Revised Manuscript: September 26, 2006
Manuscript Accepted: October 20, 2006
Published: November 13, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Andrew Downes, Donald Salter, and Alistair Elfick, "Simulations of atomic resolution tip-enhanced optical microscopy," Opt. Express 14, 11324-11329 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-23-11324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988). [CrossRef]
  2. R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995). [CrossRef]
  3. V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997). [CrossRef]
  4. R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000). [CrossRef] [PubMed]
  5. R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001). [CrossRef] [PubMed]
  6. F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995). [CrossRef] [PubMed]
  7. A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998). [CrossRef]
  8. N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005). [CrossRef] [PubMed]
  9. J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004). [CrossRef] [PubMed]
  10. I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005). [CrossRef]
  11. A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006). [CrossRef] [PubMed]
  12. D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982). [CrossRef]
  13. A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003). [CrossRef]
  14. F. J. Giessibl, “Atomic resolution on Si(111)-7×7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76, 1470 (2000). [CrossRef]
  15. M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997). [CrossRef]
  16. B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited