OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 12 — Dec. 18, 2006

Scanning optical near-field resolution analyzed in terms of communication modes

Per Martinsson, Hanna Lajunen, and Ari T. Friberg  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11392-11401 (2006)
http://dx.doi.org/10.1364/OE.14.011392


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analysis of scanning near-field optical microscopy in terms of the so-called communication modes using scalar wave theory. We show that the number of connected modes increases when the scanning distance is decreased, but the number of modes decreases when the size of the scanning aperture is decreased. In the limit of small detector aperture the best-connected mode reduces effectively to the Green function, evaluated at the center of the scanning aperture. We also suggest that the resolution of a scanning optical near-field imaging system is essentially given by the width of the lowest-order communication mode.

© 2006 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(180.5810) Microscopy : Scanning microscopy
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: June 13, 2006
Revised Manuscript: August 22, 2006
Manuscript Accepted: August 23, 2006
Published: November 13, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Per Martinsson, Hanna Lajunen, and Ari T. Friberg, "Scanning optical near-field resolution analyzed in terms of communication modes," Opt. Express 14, 11392-11401 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-23-11392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 1-4 (2005). [CrossRef]
  2. J. M. Vigoureux, F. Depasse, and C. Girard, "Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves," Appl. Opt. 31, 3036-3045 (1992). [CrossRef] [PubMed]
  3. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, London, UK, 2003).
  4. D. A. B. Miller, "Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths," Appl. Opt. 39, 1681-1699 (2000). [CrossRef]
  5. R. Piestun and D. A. B. Miller, "Electromagnetic degrees of freedom of an optical system," J. Opt. Soc. Am. A 17, 892-902 (2000). [CrossRef]
  6. A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, "Limits of diffractive optics by communication modes," J. Opt. A: Pure Appl. Opt. 5, 153-158 (2003). [CrossRef]
  7. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, "High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115-3117 (1998). [CrossRef]
  8. A. Walther, The Ray and Wave Theory of Lenses (Cambridge University Press, Cambridge, UK, 1997).
  9. T. Habashy, A. T. Friberg, and E. Wolf, "Application of the coherent-mode representation to a class of inverse source problems," Inverse Probl. 13, 47-61 (1997). [CrossRef]
  10. W. Streifer, "Optical resonator modes — Rectangular reflectors of spherical curvature," J. Opt. Soc. Am. 55, 868-877 (1965). [CrossRef]
  11. D. Porter and D. S. G. Stirling, Integral Equations—A Practical Treatment from Spectral Theory to Applications (Cambridge University Press, Cambridge, UK, 1990).
  12. M. Bertero, C. de Mol, F. Gori, and L. Ronchi, "Number of degrees of freedom in inverse diffraction," Opt. Acta 30, 1051-1065 (1983). [CrossRef]
  13. C. Lanczos, Linear Differential Operators (Van Nostrand, London, 1961).
  14. B. R. Frieden, "Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions," in Progress in Optics, E. Wolf, ed., (North-Holland, Amsterdam, 1971), Vol. VIII pp. 311-407.
  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, eds., Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, UK, 1992).
  16. L. Novotny, D. W. Pohl, and P. Regli, "Light propagation through nanometer-sized structures: the twodimensional-aperture scanning near-field optical microscope," J. Opt. Soc. Am. A 11, 1768-1779 (1994). [CrossRef]
  17. D. A. Christensen, "Analysis of near field tip patterns including object interaction using finite-difference timedomain calculations," Ultramicroscopy 57, 189-195 (1995). [CrossRef]
  18. J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in light transmission through a near-field probe," J. Opt. A: Pure Appl. Opt. 6, S59-S63 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited