OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Improved localization of hidden fluorescent objects in highly scattering slab media based on a two-way transmittance determination

Jean-Pierre L’Huillier and Fabrice Vaudelle  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12915-12929 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel procedure for localizing fluorescing-tagged objects embedded in turbid slab media from fluorescent intensity profiles acquired along a surface of interest. Using a numerical model based on a finite element code, we firstly develop a method devoted to lateral detection by varying the laser source position along one face of the tissue slab. Next, we mainly demonstrate the possibility to accurately assess the depth location by alternately changing the position of the source and the detector at the both sides of the slab. The dimensionless depth indicator derived from this procedure remains independent, over a wide range, on both the optical properties of the host tissue and the probe concentration. The overall findings validate the method in situations involving moderate size object-like tumors tagged with a new smart contrast agent (Cy 5.5) that offers high tumor-to-background contrast and great interest in early cancer diagnostic.

© 2006 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 22, 2006
Revised Manuscript: November 6, 2006
Manuscript Accepted: November 29, 2006
Published: December 22, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Jean-Pierre L'Huillier and Fabrice Vaudelle, "Improved localization of hidden fluorescent objects in highly scattering slab media based on a two-way transmittance determination," Opt. Express 14, 12915-12929 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, "Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis," Appl. Opt. 36, 75-92 (1997). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, and R. Weissleder, "Would near infrared fluorescence signals propagate through large human organs for clinical studies?" Opt. Lett. 27, 333-335 (2002). [CrossRef]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence mediated tomographic imaging system," Nature Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  4. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  5. E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thomson, and R. Roy, Near-infrared fluorescence imaging and spectroscopy in random media and tissues, in Biomedical photonics handbook, T. Vo Dinh ed., (CRC Press, 2003).
  6. H. Quan and Z. Guo, "Fast 3-D optical imaging with transient fluorescence signals" Opt. Express 12, 449-457 (2004). [CrossRef] [PubMed]
  7. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffusive optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  8. K. A. Kang, D. F. Bruley, J. M. Londono, and B. Chance, "Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra," Ann. Biomed. Eng. 26, 138-145 (1998). [CrossRef]
  9. E. L. Hull, M. G. Nichols and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurement of cw diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998). [CrossRef]
  10. T. J. Farrell, M. S. Patterson and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  11. X. Intes, B. Chance, M. J. Holboke and A. G. Yodh, "Interfering diffusive photon density waves with an absorbing-fluorescent inhomogeneity," Opt. Express 8, 223-231 (2001). [CrossRef] [PubMed]
  12. T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin and N. Schwartz, "Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium," in Optical Tomography and spectroscopy of Tissue :Theory, Instrumentation, Model, and Human studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 741-749 (1997). [CrossRef]
  13. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, "Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy," Appl. Opt. 34, 3425-3430 (1995). [CrossRef] [PubMed]
  14. I. Gannot, R. F. Bonner, G. Gannot, P. C. Fox, P. D. Smith and A. H. Gandjbakhche, "Optical simulations of a non-invasive technique for the diagnosis of diseased salivary glands in situ,"Med. Phys. 25, 1139-1144 (1998). [CrossRef] [PubMed]
  15. I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, "In vivo quantitative three dimensional localization of tumor labelled with exogenous specific fluorescence markers," Appl. Opt. 42, 3073-3080 (2003). [CrossRef] [PubMed]
  16. M. Pfister and B. Scholz, "Localization of fluorescent spots with space-space MUSIC for mammography-like measurements system," J. Biomed. Opt. 9, 481-487 (2004). [CrossRef] [PubMed]
  17. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300-2310 (2005). [CrossRef] [PubMed]
  18. C. D’Andrea, L. Spinelli, D. Comelli, G. Valentini and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005). [CrossRef] [PubMed]
  19. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissues," Appl. Opt. 44,1934-1941 (2005). [CrossRef] [PubMed]
  20. J. Svensson and S. Andersson-Engels, "Modeling of spectral changes for depth localization of fluorescent inclusion," Opt. Express 13, 4263 - 4274 (2005). [CrossRef] [PubMed]
  21. B. Yuan and Q. Zhu, "Separately reconstructing the structural and functional parameters of a fluorescent inclusion embedded in a turbid medium," Opt. Express 14, 7172-7187 (2006). [CrossRef]
  22. J. P. L’Huillier and A. Humeau, "A computationally efficient model for simulating time-resolved fluorescence spectroscopy of thick biological tissues, in Photon Management, F. Wyrowski, ed., Proc. SPIE 5456, 1-10 (2004). [CrossRef]
  23. X. Deulin and J. P. L’Huillier, "Finite element approach to photon propagation modelling in semi-infinite homogeneous and multilayered tissue structures," Eur. Phys. J. Appl. Phys. 33, 133 - 146 (2006). [CrossRef]
  24. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A. 11, 2727-2741 (1994). [CrossRef]
  25. M. Born and E. Wolf, "Principles of Optics," (MacMillan, N.Y., 1964).
  26. D. S. Burnett, "Finite Element Analysis. from concepts to applications," (Addison-Wesley, 1987).
  27. M. Schweiger, S. R. Arridge, M. Hiroaka and D. T. Delpy, "The finite element model for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  28. FlexPDE , "A Flexible Solution System for Partial Differential Equations," PDE Inc.
  29. M. Sadoqi, P. Riseborough and S. Kumar, "Analytical models for time-resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725 - 2743 (2001). [CrossRef] [PubMed]
  30. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989). [CrossRef] [PubMed]
  31. A. M. Zysk, E. J. Chaney and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours, Phys. Med. Biol. 51, 2165-2177 (2006). [CrossRef] [PubMed]
  32. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distribution in mice," Opt. Express 13, 2564- 2577 (2005). [CrossRef] [PubMed]
  33. A. E. Cerrusi, S. Fantini, J. S. Maier, W. W. Mantulin and E. Gratton, "Chromophore detection by fluorescence spectroscopy in tissue-like phantoms," in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE 2979, 139-150 (1997). [CrossRef]
  34. M. S. Patterson and B. W. Pogue, "Mathematical models for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963 - 1974 (1994). [CrossRef] [PubMed]
  35. G. G. Guilbault, "Practical Fluorescence," (Marcel Dekker, Inc., New-York 1973).
  36. L. Spinelli, A. Toricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004). [CrossRef] [PubMed]
  37. H. Heusmann, J. Kölzer and G. Mitic, "Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy," J. Biomed. Opt. 1, 425-434 (1996). [CrossRef]
  38. I. Gannot, G. Gannot, A. Garashi, A. Gandjbakhche, A. Buchner and Y. Keisari, "Laser activated fluorescence measurements and morphological features: an in vivo study of clearance time of fluorescein isothiocyanate tagged cell markers," J. Biomed. Opt. 7, 14-19 (2002). [CrossRef] [PubMed]
  39. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13, 195-208 (2003). [PubMed]
  40. S. Achilefu, "Lighting up tumors with receptor-specific optical molecular probes," Technol. Cancer Res. Treat. 3, 393-409 (2004) [PubMed]
  41. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001). [CrossRef]
  42. A. Godavarty, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005). [CrossRef] [PubMed]
  43. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thomson, M. Gurfinkel and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited