OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

Yasuaki Hori, Yoshiaki Yasuno, Shingo Sakai, Masayuki Matsumoto, Tomoko Sugawara, Violeta Dimitrova Madjarova, Masahiro Yamanari, Shuichi Makita, Takeshi Yasui, Tsutomu Araki, Masahide Itoh, and Toyohiko Yatagai  »View Author Affiliations


Optics Express, Vol. 14, Issue 5, pp. 1862-1877 (2006)
http://dx.doi.org/10.1364/OE.14.001862


View Full Text Article

Enhanced HTML    Acrobat PDF (1225 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibilityof the algorithm.

© 2006 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 3, 2006
Revised Manuscript: February 20, 2006
Manuscript Accepted: February 27, 2006
Published: March 6, 2006

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yasuaki Hori, Yoshiaki Yasuno, Shingo Sakai, Masayuki Matsumoto, Tomoko Sugawara, Violeta Madjarova, Masahiro Yamanari, Shuichi Makita, Takeshi Yasui, Tsutomu Araki, Masahide Itoh, and Toyohiko Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-5-1862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang and E. A. Swanson and C. P. Lin, J. S. Schuman, W. G. Stinson and W. Chang and M. R. Hee, T. Flotte and K. Gregory and C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991). [CrossRef] [PubMed]
  2. J. Welzel, "Optical coherence tomography in dermatology: a review," Skin. Res. Technol. 7,1-9 (2001). [CrossRef] [PubMed]
  3. J.M. Schmitt, M.J. Yadlowsky and R.F. Bonner., "Subsurface imaging of living skin with optical coherence microscopy," Darmatology 191,93-98 (1995). [CrossRef]
  4. J. Welzel, E. Lankenau, R. Birngruber and R. Engelhardt, "Optical coherence tomography of the human skin," J. Am. Acad. Dermatol. 37,958-963 (1997). [CrossRef]
  5. N.D. Gladkova, G.A. Petrova, N.K. Nikulin, S.G. Radenska-Lopovok, L.B. Snopova, Y.P. Chumakov, V.A. Nasonova, V.M. Gelikonov, G.V. Gelikonov, R.V. Kuranov, A.M. Sergee and F.I. Feldchtein, "In vivo optical coherence tomography imaging of human skin: norm and pathology," Skin. Res. Technol. 6,6-16 (2000). [CrossRef]
  6. A. Paginoni, A. Knuette, P. Welker, M. Rist, T. Stoudemaye, L. Kolbe, I. Sadiq and A.M. Kligman, "Optical coherence tomography in dermatology," Skin. Res. Technol. 5,83-87 (1999). [CrossRef]
  7. M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, and J.F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123,458-463 (2004). [CrossRef] [PubMed]
  8. J.F. de Boer, T.E. Milner, M.J.C. van Gemert and J.S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22,934-936 (1997). [CrossRef] [PubMed]
  9. J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z. Chen and J. Nelson, "Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography," Opt. Express 3,212-218 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-212. [CrossRef] [PubMed]
  10. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson and J.F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6,474-479 (2001). [CrossRef] [PubMed]
  11. Z. Chen, T.E. Milner, S. Srinivas, X. Wang and A. Malekafzali, M.J.C. van Gemert, and J.S. Nelson, "Noninvasive imagingof in vivo blood flow velocity usingoptical Doppler tomography," Opt. Lett. 22,1119-1121 (1997). [CrossRef] [PubMed]
  12. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood f low in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25,114-116 (2000). [CrossRef]
  13. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer and J.S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25,1358-1360 (2000). [CrossRef]
  14. S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120,128-134 (2003). [CrossRef] [PubMed]
  15. Y. Nishimori, C. Edwards, A. Pearse, K. Matsumoto, M. Kawai, and R. Marks, "Degenerative alterations of dermal collagen fiber bundles in photodamaged human skin and UV-irradiated hairless mouse skin: possible effect on decreasing skin mechanical properties and appearance of wrinkles," J. Invest. Dermatol. 117,1458-1463 (2001).
  16. M. Suehiro, S. Hirano, K. Ikenaga, N. Katoh, H. Yasuno and S. Kishimoto, "Characteristics of skin surface morphology and transepidermal water loss in clinically normal-appearing skin of patients with atopic dermatitis: a video-microscopy study," J. Dermatol. 31,78-85 (2004). [PubMed]
  17. G.L. Grove, M.J. Grove, J.J. Leyden, L. Lufrano, B. Schwab, B.H. Perry and E.G. Thorne, "Skin replica analysis of photodamaged skin after therapy with tretinoin emollient cream," J. Am. Acad. Dermatol. 25,231-237 (1991). [CrossRef] [PubMed]
  18. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R.H. Webb and R.R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104,946-952 (1995). [CrossRef] [PubMed]
  19. M. Vogt, A. Knuttel, K. Hoffmann, P. Altmeyer and H. Ermert, "Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging," Biomed. Tech. 48,116-121 (2003). [CrossRef]
  20. A. F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995). [CrossRef]
  21. Gerd H¨ausler and Michael Walter Lindner, "Coherence radar and spectral radar —New tools for dermatological diagnosis," J. Biomed. Opt. 3,21-31 (1998).
  22. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28,1745-1747 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1745. [CrossRef] [PubMed]
  23. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo highresolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367. [CrossRef] [PubMed]
  24. Takahisa Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38,6133-6137 (1999). [CrossRef]
  25. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher," Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889. [CrossRef] [PubMed]
  26. JohannesF. de Boer, Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney and Brett E. Bouma," "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003). [CrossRef] [PubMed]
  27. MichaelA. Choma, Marinko V. Sarunic, Changhuei Yang and Joseph A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183. [CrossRef] [PubMed]
  28. Maciej Wojtkowski, Rainer Leitgeb, Andrzej Kowalczyk, Tomasz Bajraszewski, and Adolf F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002). [CrossRef] [PubMed]
  29. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectraldomain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11,3598-3604 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598. [CrossRef] [PubMed]
  30. B. H. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Realtime fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13,3931-3944 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931. [CrossRef] [PubMed]
  31. S. Chinn, E. Swanson, and J. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22,340-342 (1997). [CrossRef] [PubMed]
  32. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11,2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953. [CrossRef] [PubMed]
  33. Jun Zhang, Woonggyu Jung, J. Stuart Nelson and Zhongping Chen, Full range polarizationsensitive Fourier domain optical coherence tomography, Opt. Express 12,6033-6039 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033. [CrossRef] [PubMed]
  34. MarinkoV. Sarunic, Michael A. Choma, Changhuei Yang, and Joseph A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13,957-967 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957. [CrossRef] [PubMed]
  35. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 133513-3528 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513. [CrossRef] [PubMed]
  36. Y. Yasuno, V.D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13,10652-10664 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652 [CrossRef] [PubMed]
  37. R. Huber, M. Wojtkowski, J. Fujimoto, J. Jiang, and A. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13,10523-10538 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10523. [CrossRef] [PubMed]
  38. S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28,1981-1983 (2003). [CrossRef] [PubMed]
  39. WilliamJ.  Cunliffe, "Histology," in Acne, (Martin Dunitz Ltd., London, UK, 1989), pp. 93-114.
  40. American National Standards institute, "American National Standard for the Safe Use of Lasers ANSI Z136.1-2000," American National Standards institute, New York (2000).
  41. J. Weissman, T. Hancewicz, and P. Kaplan, "Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis," Opt. Express 12,5760-5769 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5760. [CrossRef] [PubMed]
  42. S. Jiao, R. Knighton, X. Huang, G. Gregori and C.A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13,444-452 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444. [CrossRef] [PubMed]
  43. Per-Erik Danielsson, "Euclidean distance mapping", Computer Graphics and Image Processing 14227-248 (1980). [CrossRef]
  44. M. Mujat, C.R. Chan, B. Cense, B.H. Park, C. Joo, T. Akkin, T.C. Chen and J.F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 12,9480-9491 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9480. [CrossRef]
  45. D. Cabrera Fernández, H. Salinas, and C. Puliafito, "Automated detection of retinal layer structures on optical coherence tomography images," Opt. Express 13,10200-10216 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10200. [CrossRef] [PubMed]
  46. N. Kashibuchi, Y. Hirai, K. O’Goshi and H. Tagami, "Three-dimensional analyses of individual corneocytes with atomic force microscope: morphological changes related to age, location and to the pathologic skin conditions," Skin. Res. Technol. 8,203-211 (2002). [CrossRef] [PubMed]
  47. J. Welzel, M. Bruhns and H.H. Wolff, "Optical coherence tomography in contact dermatitis and psoriasis," Arch. Dermatol. Res. 295,50-55 (2003). [CrossRef] [PubMed]
  48. T. Gambichler, S. Boms, M. Stucker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer and K.M. Hoffmann, "Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology," Arch. Dermatol. Res. 297,218-225 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2500 KB)     
» Media 2: AVI (1904 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited