OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Endoscope-tip interferometer for ultrahigh

Alexandre R. Tumlinson, Jennifer K. Barton, Boris Považay, Harald Sattman, Angelika Unterhuber, Rainer A. Leitgeb, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 14, Issue 5, pp. 1878-1887 (2006)
http://dx.doi.org/10.1364/OE.14.001878


View Full Text Article

Enhanced HTML    Acrobat PDF (2865 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency domain optical coherence tomography (FD-OCT) allows interferometer topologies with simplified system construction and handling. Problems of dispersion and polarization matching between the sample and reference arms, as well as beamsplitter spectral non-uniformity, are mitigated when the interferometer is wholly contained in the endoscope tip. A common path set-up, using a reference reflection originating from the inside surface of the glass envelope at the distal end of the endoscope, and an alternative approach with more efficient collection of the reference light using a novel beamsplitter design have been developed. High-speed (20,000 A-lines/s) ultrahigh axial resolution (2.4 μm) tomograms of mouse colon have been acquired using a 2 mm outer diameter endoscope in vivo. The FD-OCT system uses a compact mode-locked Ti:Al2O3 laser emitting a broad spectrum (160 nm full-width-half-maximum) centered at 800 nm in combination with a CCD based, spectrally sensitive detector.

© 2006 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 9, 2006
Revised Manuscript: February 22, 2006
Manuscript Accepted: February 27, 2006
Published: March 6, 2006

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Alexandre R. Tumlinson, Jennifer K. Barton, Boris Povazay, Harald Sattman, Angelika Unterhuber, Rainer A. Leitgeb, and Wolfgang Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-5-1878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. I. Feldchtein, J. Bush, G. Gelikonov, V. Gelikonov, and S. Piyevsky, "Cost effective, all-fiber autocorrelator based 1300 nm OCT system," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 5690, 349-355 (2005). [CrossRef]
  2. H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatum, "Comparitive signal-to-noise analysi of fibre-optic based optical coherence tomography systems," J. Mod. Opt. 52,1965-1979 (2005) [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610 [CrossRef] [PubMed]
  4. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001). [CrossRef]
  5. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. J. Kowalczyk, and J.S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404 [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  7. T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999). [CrossRef]
  8. P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: improvement of signal-to-noise ratio," in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 3915, 55-59 (2000), [CrossRef]
  9. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889 [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11,2183 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183 [CrossRef] [PubMed]
  11. J. F. deBoer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef]
  12. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography." Opt. Express 12, 2156-2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156 [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-341 (1997). [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. deBoer, N. Iftimia, B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953 [CrossRef] [PubMed]
  15. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for jones matrix imaging of biological samples," Appl. Phys. Lett. 11, 3023-3025 (2004). [CrossRef]
  16. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. deBoer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435 [CrossRef] [PubMed]
  17. S. H. Yun, G. J. Tearney, J. F. deBoer, and B. E. Bouma, "Pulsed-source and swept source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5614 [CrossRef] [PubMed]
  18. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). [CrossRef] [PubMed]
  19. P. Koch, G. Huettmann, D. Boller, J. Weltzel, and E. Koch, "Ultra high resolution FDOCT system for dermatology," in Coherence domain optical methods and optical coherence tomography in biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 5690, 24-30 (2005). [CrossRef]
  20. J.K. Barton, D.B. Dal-Ponte, S.K. Williams, B. Ford, and M.R. Descour, "Imaging vascular implants with optical coherence tomography." in Coherence domain optical methods and optical coherence tomography in biomedicine IV, V.V. Tuchin, J.A. Izatt, J.G. Fujimoto, eds., Proc. SPIE 3915, 229-236 (2000). [CrossRef]
  21. P.R. Herz, Y. Chen, A.D. Aguirre, and J.G. Fujimoto, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography." Opt. Express 12, 3532-3542 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3532 [CrossRef] [PubMed]
  22. J. A. Izatt, M. V. Sivak, A. M. Rollins, A. Hiroii, T. Hirata, and S. Lizuka "Optical imaging device," United States Patent 6,564,089 (13 May 2003).
  23. A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, "An achromatized endoscope for ultrahigh-resolution optical coherence tomography." in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc SPIE 5861, 586110 (2005). [CrossRef]
  24. U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electronics. 11, 799-805 (2005). [CrossRef]
  25. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28,2201-2201 (2003). [CrossRef] [PubMed]
  26. M. A. Choma, C. Yang, and J. A. Izatt,"Instantaneous quadrature low-coherence interferometry with 3*3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003). [CrossRef] [PubMed]
  27. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator." Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  28. M. A. Choma, A. K. Ellerbee, C. Yang, A. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30,1162-1164 (2005). [CrossRef] [PubMed]
  29. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005). [CrossRef]
  30. M. V. SivakJr, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000). [CrossRef] [PubMed]
  31. T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-1860 [CrossRef] [PubMed]
  32. P. B. Boivin, K. Washington, K. Yang, J. M. Ward, T. P. Pretlow, R. Russel, D. G. Besselson, V. L. Godfrey, T. Doetschman. W. F. Dove, H. C. Pitot, R. B. Halberg, S. H. Itzkowitz, J. Groden, and R. J. Coffey, "Pathology of mouse models of intestinal cancer: consensus report and recommendations," Gastroenterology 124, 762-777 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited