OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Perfect lens makes a perfect trap

Zhaolin Lu, Janusz A. Murakowski, Christopher A. Schuetz, Shouyuan Shi, Garrett J. Schneider, Jesse P. Samluk, and Dennis W. Prather  »View Author Affiliations


Optics Express, Vol. 14, Issue 6, pp. 2228-2235 (2006)
http://dx.doi.org/10.1364/OE.14.002228


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we present for the first time a new and realistic application of the “perfect lens”, namely, electromagnetic traps (or tweezers). We combined two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers, and experimentally demonstrated the very unique advantages of using 3DNRFLs for electromagnetic traps. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens. Electromagnetic trapping was demonstrated using polystyrene particles in suspension, and subsequent to being trapped to a single point, they were then accurately manipulated over a large distance by simple movement of a 3DNRFL-imaged microwave monopole source.

© 2006 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(100.6640) Image processing : Superresolution
(110.6880) Imaging systems : Three-dimensional image acquisition
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Metamaterials

History
Original Manuscript: February 6, 2006
Revised Manuscript: March 13, 2006
Manuscript Accepted: March 14, 2006
Published: March 20, 2006

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Zhaolin Lu, Janusz Murakowski, Christopher A. Schuetz, Shouyuan Shi, Garrett J. Schneider, Jesse P. Samluk, and Dennis W. Prather, "Perfect lens makes a perfect trap," Opt. Express 14, 2228-2235 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-6-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10,509(1968). [CrossRef]
  2. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76,4773-4776 (1996). [CrossRef] [PubMed]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techniques 47,2075-2084 (1999). [CrossRef]
  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  5. R.A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction." Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, "Electromagnetic wave: negative refraction by photonic crystals," Nature,  423, 604-605 (2003). [CrossRef] [PubMed]
  9. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature,  426, 404 (2003). [CrossRef] [PubMed]
  10. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, and D.W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 1539014 (2005). [CrossRef] [PubMed]
  11. Z. Lu, S. Shi, C.A. Schuetz, J.A. Murakowski, and D.W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction," Opt. Express 13, 5592-5599 (2005). [CrossRef] [PubMed]
  12. A. Ashkin, "Trapping of Atoms by Resonance Radiation Pressure," Phys. Rev. Lett. 40, 729-732 (1978). [CrossRef]
  13. A. Ashkin, J.M. Dziedzic, J.E. Brjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  14. E.R. Dufresne, and D.G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]
  15. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  16. A. Ashkin, and J.M. Dziedzic, "Optical levitation by radiation pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  17. R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-22 (1996). [CrossRef] [PubMed]
  18. K. Visscher, S.P. Gross, and S.M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  19. A. Ashkin, and J.M. Dziedzic, "Optical Trapping and Manipulation of Viruses and Bacteria," Science 235, 1517−1520 (1987). [CrossRef] [PubMed]
  20. A. Ashkin, J.M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature (London) 330,769-771 (1987). [CrossRef]
  21. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, "Laser trapping in cell biology," IEEE Journal of Quantum Electronics 26, 2148-2157 (1990). [CrossRef]
  22. S. Chu, L. Holberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett. 55, 48-51(1985). [CrossRef] [PubMed]
  23. S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef] [PubMed]
  24. C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002). [CrossRef]
  25. J.P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21(1973). [CrossRef]
  26. See for example, D.J. Griffiths, Introduction to Electrodynamics (2nd edition), pp. 180-182, Prentice Hall, New Jersey (1989).
  27. Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  28. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000). [CrossRef]
  29. S. Venkataraman, G.J. Schneider, J.A. Murakowski, S. Shi, and D.W. Prather, "Fabrication of three-dimensional photonic crystals using silicon micromachining," Appl. Phys. Lett. 85, 2125 (2004). [CrossRef]
  30. P. Yao, G.J. Schneider, B. Miao, J. Murakowski, and D.W. Prather, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85,3920 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (8945 KB)     
» Media 2: MPG (7211 KB)     
» Media 3: MPG (6157 KB)     
» Media 4: MPG (7139 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited