OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking

Nicusor V. Iftimia, Daniel X. Hammer, Chad E. Bigelow, David I. Rosen, Teoman Ustun, Anthony A. Ferrante, Danthu Vu, and R. Daniel Ferguson  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3377-3388 (2006)
http://dx.doi.org/10.1364/OE.14.003377


View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate in vivo measurements in human retinal vessels of an experimental parameter, the slope of the low coherence interferometry (LCI) depth reflectivity profile, which strongly correlates with the real value of blood hematocrit. A novel instrument that combines two technologies, spectral domain low coherence interferometry (SDLCI) and retinal tracking, has been developed and used for these measurements. Retinal tracking allows a light beam to be stabilized on retinal vessels, while SDLCI is used for obtaining depth-reflectivity profiles within the investigated vessel. SDLCI backscatter extinction rates are obtained from the initial slope of the A-scan profile within the vessel lumen. The differences in the slopes of the depth reflectivity profiles for different subjects are interpreted as the difference in the scattering coefficient, which is correlated with the number density of red blood cells (RBC) in blood. With proper calibration, it is possible to determine hematocrit in retinal vessels. Ex vivo measurements at various RBC concentrations were performed to calibrate the instrument. Preliminary measurements on several healthy volunteers show estimated hematocrit values within the normal clinical range.

© 2006 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 30, 2006
Revised Manuscript: April 4, 2006
Manuscript Accepted: April 6, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Nicusor V. Iftimia, Daniel X. Hammer, Chad E. Bigelow, David I. Rosen, Teoman Ustun, Anthony A. Ferrante, Danthu Vu, and R. Daniel Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-8-3377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Johner, P. Chamney, D. Schneditz, and M. Krämer, "Evaluation of an ultrasonic blood volume monitor," Nephrol. Dial. Transplant. 13, 2098-2103 (1998). [CrossRef] [PubMed]
  2. W. Secomsky, A. Nowicki, F. Guidi, P. Tortoli, and P.A. Lewin, "Non-invasive measurement of blood hematocrit in artery," Bulletin of the Polish Academy of Sciences,  53 (3), 245-50 (2005).
  3. J.M. Schmitt, Z Guan-Xiong, and J. Miller, "Measurement of blood hematocrit by dual-wavelength near-IR photoplethsymography, " Proc. SPIE 1441, 150-161 (1992). [CrossRef]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography- principles and application," Rep. Prog. Phys. 66. 239-303 (2003). [CrossRef]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [REMOVED HYPERLINK FIELD] [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  7. J.F. de Boer, B. Cense, B.H. Park,  et al., "Improved signal-to-noise ratio in spectral-domain compared with timedomain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  8. N.A. Nassif, B. Cense, B.H. Park,  et al., "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  9. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12- (1998). [CrossRef]
  10. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saunders, "En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation," Opt. Express 13,6133-6144 (2005). [CrossRef] [PubMed]
  11. B.R. White, M.C. Pierce, N. Nassif,  et al., "In vivo dynamic human retinal blood flow imaging using ultra-highspeed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2004). [CrossRef]
  12. J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13,7449-7457 (2005). [CrossRef] [PubMed]
  13. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12,4790-4803 (2004). [CrossRef] [PubMed]
  14. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004). [CrossRef] [PubMed]
  15. D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Express 13,7937-7947 (2005). [CrossRef] [PubMed]
  16. D. P. Wornson, G. W. Hughes, and R. H. Webb, "Fundus tracking with the scanning laser ophthalmoscope," Appl. Opt. 26, 1500-1504 (1987). [CrossRef] [PubMed]
  17. T. N. Cornsweet and H. D. Crane, "Servo-controlled infrared optometer," J. Opt. Soc. Am. 60, 548-554 (1970). [CrossRef] [PubMed]
  18. M Yu Kirillin, A.V. Priezzhev, V V Tuchin, R K Wang, and R Myllylä, "Effect of red blood cell aggregation and sedimentation on optical coherence tomography signals from blood samples," J. Phys. D: Appl. Phys. 382582-2589 (2005). [CrossRef]
  19. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10,1542-1549 (2002)[REMOVED HYPERLINK FIELD]. [PubMed]
  20. G. Hausler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  21. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  22. L. Thrahe, M.H. Frosz, T.M. Jørgensen, A. Tycho, H.T. Yura, P.E. Andersen, " Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures," Opt. Lett. 29(14), 1641-43 (2004). [CrossRef]
  23. D. J. Faber, E.G. mick, M.C.G. Aalders, T.G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett 28(16), 1436-38 (2003). [CrossRef] [PubMed]
  24. D. J. Faber, E.G. Mick, M.C.G. Aalders, T.G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Optt. Lett. 30(9), 1015-17 (2005). [CrossRef]
  25. J.M. Steinke and A.P. Shepherd, "Diffusion model of the optical absorbance of whole blood," J. Opt. Soc. Am. A 5, 813-822 (1988). [CrossRef] [PubMed]
  26. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited