OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Visualization of optical binding of microparticles using a femtosecond fiber optical trap

N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3677-3687 (2006)
http://dx.doi.org/10.1364/OE.14.003677


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

At the microscopic level, light-matter interactions can organize colloidal matter via a process known as optical binding. Optical binding refers to the creation of arrays of microparticles formed in the presence of laser fields, the inter-particle spacing being determined by the refocusing and/or scattering of the laser fields by the microparticles. In this paper we investigate one-dimensional optically bound arrays of microparticles using a femtosecond dual-beam optical fiber trap, and develop a means to visualize the field intensity distributions responsible for the optical binding using two-photon fluoresence imaging from fluorescein added to the host medium. The experimental intensity distributions are shown to be in good agreement with numerical simulations, thereby validating our new approach to visualizing the fields responsible for optical binding, and the physical model of optical binding as due to refocusing of the fields by the microparticles.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.7010) Lasers and laser optics : Laser trapping
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Trapping

History
Original Manuscript: February 14, 2006
Revised Manuscript: April 1, 2006
Manuscript Accepted: April 2, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-8-3677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J.-M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  3. A. Ashkin, J.-M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  4. K. Dholakia, and P. Reece, "Optical micromanipulation takes hold," Nano Today,  1, 18 (2006). [CrossRef]
  5. K. C. Neuman and S. M. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  6. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002). [CrossRef] [PubMed]
  7. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia and D. McGloin,"Creation and manipulation of three-dimensional optically trapped structures," Opt. Express 11, 3562 (2003), http://www.opticsexpress.org/abstract.cfm?id=78220 [CrossRef] [PubMed]
  8. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12,220-226 (2004), http://www.opticsexpress.org/abstract.cfm?id=78450 [CrossRef] [PubMed]
  9. 9. Y. Roichman and D. G. Grier, "Holographic assembly of quasicrystalline photonic heterostructures," Opt. Express 13, 5434-5439 (2005), http://www.opticsexpress.org/abstract.cfm?id=84909 [CrossRef] [PubMed]
  10. P. J. Rodrigo, V. R. Daria, J. Glueckstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005). [CrossRef]
  11. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical matter: Crystallization and binding in intense optical fields," Science 249, 749-754 (1990). [CrossRef] [PubMed]
  12. S. Tatarkova, A. E. Carruthers and K. Dholakia, "One dimensional optical bound arrays of microscopic particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  13. D. McGloin, A. E. Carruthers, K. Dholakia and E.M. Wright, "Optically bound microscopic particles in one dimension," Phys. Rev. E 69, 021403 (2004). [CrossRef]
  14. N. K. Metzger, K. Dholakia and E.M. Wright, "Observation of bistability and hysteresis in optical binding of two dielectric spheres," Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  15. W. Singer, M. Frick, S. Bernet and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568-1574 (2001). [CrossRef]
  16. K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Physics 6, 13 (2004). [CrossRef]
  17. M. Born and E. Wolf, "Diffraction by a conducting sphere," in Principles of Optics, (Cambridge University Press, Cambridge, UK, 2003). pp. 759-789.
  18. J. W. Goodman, "Wave-Optics Analysis of Coherent Optical Systems," in Introduction to Fourier Optics, (McGraw-Hill, 1996), pp. 96-125.
  19. J. Liu, H. Schroeder, S L. Chin, R. Li, and Z. Xu, "Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation," Opt. Express 13, 10248-10259 (2005), http://www.opticsexpress.org/abstract.cfm?id=86467 [CrossRef] [PubMed]
  20. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light force trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  21. T. Cizmar, V. Garces-Chavez, K. Dholakia and P. Zemanek, "Optical conveyor belt for delivery of submicron particles," Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  22. W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet and M. Ritsch-Marte, "Combined optical tweezers and stretcher in microscopy," in Hybrid and novel imaging and new optical instrumentation for Biomedical application, A.-C. Boccara, A. A. Oraevsky, eds., Proc. SPIE Vol. 4434, 227 (2001). [CrossRef]
  23. B. Agate, C. T. A. Brown, W. Sibbett and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004), http://www.opticsexpress.org/abstract.cfm?id=80322 [CrossRef] [PubMed]
  24. W. J. Tomlinson, R. H. Stolen and C. V. Shank, "Compression of optical pulses chirped by self-phase modulation in fibers," J. Opt. Soc. Am. B 1, 139-149 (1984). [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, London, UK, 1995).
  26. J. B. Kelman, D. A. Greenhalgh, E. Ramsay, D. Xiao, and D. T. Reid, "Flow imaging by use of femtosecond-laser induced two-photon fluorescence," Opt. Lett. 29, 1873-1875 (2004). [CrossRef] [PubMed]
  27. W. Kaiser and C. G. B. Garret, "Two-photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-331 (1961). [CrossRef]
  28. A. Fischer, C. Cremer and E. H. K. Stelzer, Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titan-sapphire laser," Appl. Opt. 34, 1989-2003 (1995). [CrossRef] [PubMed]
  29. P. Domachuk, M. Cronin-Golomb, B. Eggleton, S. Mutzenich, G. Rosengarten and A. Mitchell, "Application of optical trapping to beam manipulation in optofluidics, " Opt. Express 13, 7265-7275 (2005), http://www.opticsexpress.org/abstract.cfm?id=85429 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1380 KB)     
» Media 2: MOV (1309 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited