OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Miniaturized high-NA focusing-mirror multiple optical tweezers

Fabrice Merenda, Johann Rohner, Jean-Marc Fournier, and René-Paul Salathé  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6075-6086 (2007)
http://dx.doi.org/10.1364/OE.15.006075


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An array of high numerical aperture parabolic micromirrors (NA = 0.96) is used to generate multiple optical tweezers and to trap micron-sized dielectric particles in three dimensions within a fluidic device. The array of micromirrors allows generating arbitrarily large numbers of 3D traps, since the whole trapping area is not restricted by the field-of-view of the high-NA microscope objectives used in traditional tweezers arrangements. Trapping efficiencies of Qmax r ≃ 0.22, comparable to those of conventional tweezers, have been measured. Moreover, individual fluorescence light from all the trapped particles can be collected simultaneously with the high-NA of the micromirrors. This is demonstrated experimentally by capturing more than 100 fluorescent micro-beads in a fluidic environment. Micromirrors may easily be integrated in microfluidic devices, offering a simple and very efficient solution for miniaturized optical traps in lab-on-a-chip devices.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1530) Medical optics and biotechnology : Cell analysis
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Trapping

History
Original Manuscript: March 8, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 27, 2007
Published: May 2, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Fabrice Merenda, Johann Rohner, Jean-Marc Fournier, and René-Paul Salathé, "Miniaturized high-NA focusing-mirror multiple optical tweezers," Opt. Express 15, 6075-6086 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-10-6075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  3. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002). [CrossRef] [PubMed]
  4. F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001). [CrossRef] [PubMed]
  5. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004). [CrossRef] [PubMed]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  7. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005). [CrossRef]
  8. S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005). [CrossRef] [PubMed]
  9. J. M. Fournier, M. M. Burns, and J. A. Golovchenko, "Writing Diffractive Structures by Optical Trapping," in Practical Holography IX, S. A. Benton, eds., Proc. SPIE 2406, pp. 101-111 (1995).
  10. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  11. J. Rohner, J. M. Fournier, P. Jacquot, F. Merenda, and R. P. Salathe, "Multiple optical trapping in high gradient interference fringes," in Optical Trapping and Optical Micromanipulation III, K. Dholakia and G. C. Spalding, eds., Proc. SPIE 6326, 6326-07 (2006).
  12. C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006). [CrossRef]
  13. Y. Ogura, K. Kagawa, and J. Tanida, "Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources," Appl. Opt. 40, 5430-5435 (2001). [CrossRef]
  14. C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004). [CrossRef]
  15. J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004). [CrossRef]
  16. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-Formation and Flow-Control of Fine Particles by Laser-Scanning Micromanipulation," Opt. Lett. 16, 1463-1465 (1991). [CrossRef] [PubMed]
  17. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999). [CrossRef]
  18. R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27, 267-269 (2002). [CrossRef]
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiberoptic Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  20. S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, "Monolithic integration of microfluidic channels and semiconductor lasers," Opt. Express 14, 7723-7729 (2006). [CrossRef] [PubMed]
  21. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006). [CrossRef]
  22. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A-Pure Appl. Op. 8, S407-S429 (2006). [CrossRef]
  23. K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003). [CrossRef]
  24. P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997). [CrossRef]
  25. A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  26. S. Wakiya, "Viscous Flows Past a Spheroid," J. Phys. Soc. Jpn 12, 1130-1141 (1957). [CrossRef]
  27. M. Lieb and A. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001). [CrossRef] [PubMed]
  28. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998). [CrossRef]
  29. A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001). [CrossRef]
  30. F. Merenda, G. Boer, J. Rohner, G. Delacretaz, and R. P. Salathe, "Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow," Opt. Express 14, 1685-1699 (2006). [CrossRef] [PubMed]
  31. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric Study of the Forces on Microspheres Held by Optical Tweezers," Appl. Opt. 33, 1735-1748 (1994). [CrossRef] [PubMed]
  32. C. G. Xie, M. A. Dinno, and Y. Q. Li, "Near-infrared Raman spectroscopy of single optically trapped biological cells," Opt. Lett. 27, 249-251 (2002). [CrossRef]
  33. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2495 KB)     
» Media 2: MOV (900 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited