OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

Alper Corlu, Regine Choe, Turgut Durduran, Mark A. Rosen, Martin Schweiger, Simon R. Arridge, Mitchell D. Schnall, and Arjun G. Yodh  »View Author Affiliations


Optics Express, Vol. 15, Issue 11, pp. 6696-6716 (2007)
http://dx.doi.org/10.1364/OE.15.006696


View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumor-to-normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

© 2007 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3830) Medical optics and biotechnology : Mammography
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 5, 2007
Revised Manuscript: May 9, 2007
Manuscript Accepted: May 10, 2007
Published: May 16, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Alper Corlu, Regine Choe, Turgut Durduran, Mark A. Rosen, Martin Schweiger, Simon R. Arridge, Mitchell D. Schnall, and Arjun G. Yodh, "Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans," Opt. Express 15, 6696-6716 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-11-6696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Yodh and B. Chance, Spectroscopy and imaging with diffusing light, Phys. Today 48, 34-40 (1995). [CrossRef]
  2. A. G. Yodh and D. A. Boas, Biomedical Photonics, chapter Functional Imaging with Diffusing Light, (CRC Press, 2003) pp. 21/1-45.
  3. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. N. Pattanayak, B. Chance, and A. G. Yodh, 3D diffuse optical tomography in the plane parallel transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging, Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  4. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI, Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  5. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, Bulk optical properties of healthy female breast tissue, Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  6. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, Sources of absorption and scattering contrast for near-infrared optical mammography, Acad. Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  7. T. O. McBride B. W. Pogue, S. D. Jiang, and U. L. Osterberg, A parallel-detection frequency-domain nearinfrared tomography system for hemoglobin imaging of the breast in vivo, Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  8. V. Ntziachristos and B. Chance, Probing physiology and molecular function using optical imaging: applications to breast cancer, Breast Cancer Res. 3, 41-46 (2001). [CrossRef] [PubMed]
  9. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast, Radiology 218, 261-266 (2001). [PubMed]
  10. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, Noninvasive functional optical spectroscopy of human breast tissue, Proc. Natl. Acad. Sci. 98, 4420-4425 (2001). [CrossRef] [PubMed]
  11. A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, E. Stathopoulos, M. Kafousi, J. Ripoll, and TG Papazoglou, Optical characterization of thin female breast biopsies based on the reduced scattering coefficient, Phys. Med. Biol 50, 2583-2596 (2005). [CrossRef] [PubMed]
  12. F. Martelli and G. Zaccanti, Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method, Opt. Express 15, 486-500 (2007). [CrossRef] [PubMed]
  13. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, Concurrent mri and diffuse optical tomography of breast after indocyanine green enhancement, Proc. Natl. Acad. Sci. 97, 2767-2772 (2000). [CrossRef] [PubMed]
  14. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, In vivo continuous-wave optical breast imaging enhanced with indocyanine green, Med. Phys. 30, 1039-1047 (2003). [CrossRef] [PubMed]
  15. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol. 17, 375-378 (1999). [CrossRef] [PubMed]
  16. D. J. Hawrysz and E. M. Sevick-Muraca, Developments Toward Diagnostic Breast Cancer Imaging Using Near- Infrared Optical Measurements and Fluorescent Contrast Agents, Neoplasia 2, 388-417 (2000). [CrossRef]
  17. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, Fluorescence molecular tomography resolves protease activity in vivo, Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  18. R. Cheung, M. Solonenko, T. M. Busch, F. Del Piero, M. E. Putt, S. M. Hahn, and A. G. Yodh, Correlation of in vivo photosensitizer fluorescence and photodynamic-therapy-induced depth of necrosis in a murine tumor model, J. Of Biomed. Opt. 8, 248-252 (2003). [CrossRef]
  19. S. Ke, X. Wen, M. Gurfinkel, C. Charnsangavej, S. Wallace, E. M. Sevick-Muraca, and C. Li, Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts, Cancer Res. 63, 7870-7875 (2003). [PubMed]
  20. A. Bogaards, A. Varma, K. Zhang, D. Zach, S. K. Bisland, E. H. Moriyama, L. Lilge, P. J. Muller, and B. C. Wilson, Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: pre-clinical model and technology development, Photochem. Photobiol. Sci. 4, 438-442 (2005). [CrossRef] [PubMed]
  21. T. H. Foster, B. D. Pearson, S. Mitra, and C. E. Bigelow, Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope, Photochem. Photobiol. 81, 1544-1547 (2005). [CrossRef] [PubMed]
  22. P. I. Bastiaens and A. Squire, Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell, Trends Cell Biol. 9, 48-52 (1999). [CrossRef] [PubMed]
  23. E. Kuwana and E. M. Sevick-Muraca, Fluorescence lifetime spectroscopy for pH sensing in scattering media, Anal. Chem. 75, 4325-4329 (2003). [CrossRef] [PubMed]
  24. E. Bombardieri and F. Crippa. PET imaging in breast cancer, Q. J. of Nucl. Med. 45, 245-55 (2001).
  25. A. R. Padhani, Dynamic contrast-enhanced mri in clinical oncology: current status and future directions, J. Magn. Reson. Imaging 16, 407-422 (2002). [CrossRef] [PubMed]
  26. B. Ballou, G.W. Fisher, A. S. Waggoner, D. L. Farkas, J. M. Reiland, R. Jaffe, R. B. Mujumdar, S. R. Mujumdar, and T. R. Hakala, Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies, Cancer Immunol. Immunother 41, 257-263 (1995). [CrossRef] [PubMed]
  27. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging, Invest. Radiol. 35, 479-485 (2000). [CrossRef] [PubMed]
  28. U. Mahmood, C.H. Tung, Y. Tang, and R. Weissleder, Feasibility of in Vivo Multichannel Optical Imaging of Gene Expression: Experimental Study in Mice 1 (2002).
  29. S. Kwon, S. Ke, J. P. Houston, W. Wang, Q. Wu, C. Li, and E. M. Sevick-Muraca, Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to alpha v beta 3 receptor expressed in Kaposi’s sarcoma, Mol. Imaging 4, 75-87 (2005). [PubMed]
  30. A. Tsourkas and G. Bao, Shedding light on health and disease using molecular beacons.Brief Funct. Genomic. Proteomic. 1, 372-384 (2003). [CrossRef]
  31. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities.J. Lumin. 60-1, 281-286 (1994). [CrossRef]
  32. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Fluorescent lifetime imaging in turbid media.Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  33. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplacetransforms.Proc. Natl. Acad. Sci. 94, 8783-8788 (1997). [CrossRef] [PubMed]
  34. B. B. Das, F. Liu, and R. R. Alfano, Time-resolved fluorescence and photon migration studies in biomedical and model random media.Rep. Prog. Phys. 60, 227-292 (1997). [CrossRef]
  35. X. D. Li, B. Chance, and A. G. Yodh, Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption, Applied Optics 37, 6833-6844 (1998). [CrossRef]
  36. E. L. Hull, M. G. Nichols, and T. H. Foster, Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance, Appl. Opt. 37, 2755-2765 (1998). [CrossRef]
  37. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography, Proc. Natl. Acad. Sci. 99, 9619-9624 (2002). [CrossRef] [PubMed]
  38. A. D. Klose and A. H. Hielscher, Fluorescence tomography with simulated data based on the equation of radiative transfer, Opt. Lett. 28, 1019-1021 (2003). [CrossRef] [PubMed]
  39. V. Ntziachristos and R. Weissleder, CCD-based scanner for three-dimensional fluorescence-mediated diffuse optical tomography of small animals, Med. Phys. 29, 803-809 (2002). [CrossRef] [PubMed]
  40. E. Shives, Y. Xu, and H. Jiang, Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye, Opt. Express 10, 1557-1562 (2002). [PubMed]
  41. Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, Near-infrared phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity, Rev. Sci. Instrum. 74, 3466-3473 (2003). [CrossRef]
  42. K. R. Diamond, T. J. Farrell, and M. S. Patterson, Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence, Phys. Med. Biol. 48, 4135-4149 (2003). [CrossRef]
  43. S. C. Davis, B.W. Pogue, H. Dehghani, and K. D. Paulsen, Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction, J. Biomed. Opt. 10, 050501-050501 (2005). [CrossRef] [PubMed]
  44. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, Time resolved fluorescence tomography of turbid media based on lifetime contrast, Opt. Express 14, 12255-12270 (2006). [CrossRef] [PubMed]
  45. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection, Med. Phys. 33, 1299-1310 (2006). [CrossRef] [PubMed]
  46. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies, J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  47. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations, Phys. Med. Biol. 46, 369-383 (2001). [CrossRef] [PubMed]
  48. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, Tomographic imaging of oxygen by phosphorescence lifetime, Appl. Opt. 45, 8547-8559 (2006). [CrossRef] [PubMed]
  49. S. Li, Q. Zhang, and H. Jiang, Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments, Appl. Opt. 45, 3390-3394 (2006). [CrossRef] [PubMed]
  50. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, Spectrally resolved bioluminescence optical tomography, Opt. Lett. 31, 365-367 (2006). [CrossRef] [PubMed]
  51. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, A submillimeter resolution fluorescence molecular imaging system for small animal imaging, Med. Phys. 30, 901 (2003). [CrossRef] [PubMed]
  52. B. W. Pogue, S. L. Gibbs, B. Chen, and M. Savellano, Fluorescence imaging in vivo: raster scanned pointsource imaging provides more accurate quantification than broad beam geometries, Technol. Cancer Res. Treat. 3, 15-21 (2004). [PubMed]
  53. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice, Opt. Express 13, 2564-2577 (2005). [CrossRef] [PubMed]
  54. K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, Improved excitation light rejection enhances small-animal fluorescent optical imaging, Mol. Imaging 4, 194-204 (2005). [PubMed]
  55. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice.J. of Biomed. Opt. 10, 54003-54003 (2005). [CrossRef]
  56. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by timeresolved diffuse reflectance, Neuroimage 24, 426-35 (2005). [CrossRef] [PubMed]
  57. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, Imaging of spontaneous canine mammary tumors using fluorescent contrast agents, Photochem. Photobiol. 70, 87-94 (1999). [CrossRef] [PubMed]
  58. Akorn Inc. IC-GREENTM. http://www.akorn.com/documents/catalog/package inserts/17478-701-02.pdf, 2005. Accessed 2/13/07.
  59. S. R. Arridge, Optical tomography in medical imaging, Inverse Problems 15, R41-R93 (1999). [CrossRef]
  60. M. A. O’Leary, Imaging with diffuse photon density waves, Ph.D. Dissertation Unversity of Pennsylvania, 1996.
  61. S. R. Arridge and M. Schweiger, A gradient-based optimisation scheme for optical tomography, Opt. Express 2, 213-226 (1998). [CrossRef] [PubMed]
  62. A. Corlu, R. Choe, T. Durduran, K. Lee,M. Schweiger, E.M. C. Hillman, S. R. Arridge, and A. G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization, Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  63. A. Corlu, T. Durduran, R. Choe,M. Schweiger, E.M. C. Hillman, S. R. Arridge, and A. G. Yodh, Uniqueness and wavelength optimization in continous-wave multispectral diffuse optical tomography, Opt. Lett. 28, 2339-2341 (2003). [CrossRef] [PubMed]
  64. D. A. Boas, Diffuse Photon Probes of Structural and Dynamical Properties of TurbidMedia: Theory and Biomedical Applications, Ph.d. dissertation, University of Pennsylvania, 1996. [PubMed]
  65. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, Does the photon diffusion coefficient depend on absorption?J. Opt. Soc. Am. 14, 3358-3365 (1997). [CrossRef]
  66. D. J. Durian, The diffusion coefficient depends on absorption, Opt. Lett. 23, 1502-1504 (1998). [CrossRef]
  67. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, The finite element model for the propagation of light in scattering media: Boundary and source conditions, Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  68. V. Ntziachristos and R. Weissleder, Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation, Opt. Lett. 26, 893-895 (2001). [CrossRef]
  69. M. Schweiger, S. R. Arridge, and I. Nissilä, Gauss-Newton method for image reconstruction in diffuse optical tomography, Phys. Med. Biol. 50, 2365-2386 (2005). [CrossRef] [PubMed]
  70. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic Publishers, 1996). [CrossRef]
  71. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, A finite element approach for modeling photon transport in tissue, Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  72. S. Prahl, Optical properties spectra, http://omlc.ogi.edu/spectra/index.html, 2001. Accessed 2/14/07.
  73. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques, Photochem. Photobiol. 66, 55-64 (1997). [CrossRef] [PubMed]
  74. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results, Appl. Opt 42, 135-145 (2003). [CrossRef] [PubMed]
  75. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas, Phys. Med. Biol 50, 2451- 2468 (2005). [CrossRef] [PubMed]
  76. R. Choe, Diffuse Optical Tomography and Spectroscopy of Breast Cancer and Fetal Brain. PhD thesis, University of Pennsylvania, 2005. [PubMed]
  77. A. Godavarty, M.J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera.Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited