OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics

D. Yin, E.J. Lunt, A. Barman, A.R. Hawkins, and H. Schmidt  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7290-7295 (2007)
http://dx.doi.org/10.1364/OE.15.007290


View Full Text Article

Enhanced HTML    Acrobat PDF (360 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the implementation of fluorescence correlation spectroscopy (FCS) on a chip. Full planar integration is achieved by lithographic definition of sub-picoliter excitation volumes using intersecting solid and liquid-core optical waveguides. Concentration dependent measurements on dye molecules with single molecule resolution are demonstrated. Theoretical modeling of the FCS autocorrelation function in microstructured geometries shows that the FCS behavior can be controlled over a wide range by tailoring the micro-photonic environment. The ability to perform correlation spectroscopy using silicon photonics without the need for free-space microscopy permits implementation of numerous diagnostic applications on compact planar optofluidic devices.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Integrated Optics

History
Original Manuscript: March 28, 2007
Revised Manuscript: May 12, 2007
Manuscript Accepted: May 23, 2007
Published: May 30, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
D. Yin, E. J. Lunt, A. Barman, A. R. Hawkins, and H. Schmidt, "Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics," Opt. Express 15, 7290-7295 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-12-7290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Zander, J. Enderlein, and R.A. Keller, "Single-molecule detection in solution: methods and applications," 1st ed., Wiley (2002).
  2. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553 (1990). [CrossRef]
  3. W.E. Moerner and D.P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003). [CrossRef]
  4. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett.,  97, 017402 (2006). [CrossRef]
  5. D. Magde, E. Elson, and W.W. Webb, "Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett.,  29, 705 (1972). [CrossRef]
  6. M. Brinkmeier, K. Dorre, K. Riebeseel, and R. Rigler, "Confocal spectroscopy in microstructures," Biophys. Chem. 66, 229 (1997). [CrossRef] [PubMed]
  7. M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels," Anal. Chem. 74, 1415-1422 (2002). [CrossRef] [PubMed]
  8. M. Foquet, J. Korlach, W. R. Zipfel, W.W. Webb and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004). [CrossRef] [PubMed]
  9. L. Kastrup, H. Blom, C. Eggeling, S.W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes," Phys. Rev. Lett.,  94, 178104 (2005). [CrossRef]
  10. C. Monat, P. Domachuk and B.J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics,  1, 106 (2007). [CrossRef]
  11. D. Yin, J.P. Barber, A.R. Hawkins, D.W. Deamer, H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett.,  85, 3477 (2004). [CrossRef]
  12. D. Yin, J.P. Barber, D.W. Deamer, A.R. Hawkins, H. Schmidt, "Single-molecule detection sensitivity using planar integrated optics on a chip," Opt. Lett. 31, 2136 (2006). [CrossRef] [PubMed]
  13. H. Schmidt, D. Yin, J.P. Barber, and A.R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. in Quantum.Electron. 11, 519 (2005). [CrossRef]
  14. J.P. Barber, E.J. Lunt, Z. George, D. Yin, H. Schmidt, and A.R. Hawkins, "Integrated Hollow Waveguides with Arch-shaped Cores," IEEE Photon. Technol. Lett.,  18, 28 (2006). [CrossRef]
  15. D. Yin, J.P. Barber, A.R. Hawkins, and H. Schmidt, "Highly efficient fluorescence detection in picoliter volume liquid-core waveguides," Applied Physics Letters,  87, 211111 (2005). [CrossRef]
  16. P.F. Lenne, E. Etienne, and H. Rigneault, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures," Appl. Phys. Lett. 80, 4106 (2002). [CrossRef]
  17. P. Schwille, U. Haupts, S. Maiti, W.W. Webb, "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with 1- and 2-Photon Excitation," Biophys. J.,  77, 2251 (1999). [CrossRef]
  18. M. Eigen and R. Rigler, "Sorting Single Molecules: Application to Diagnostics and Evolutionary Biotechnology," PNAS 91, 5740 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited