OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Second harmonic generation imaging of fascia within thick tissue block

Christian P. Pfeffer, Bjorn R. Olsen, and François Légaré  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7296-7302 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (6317 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Comparing the SHG image formation for thin sections of tail tendon fascia and skeletal muscle fascia, we demonstrate that the forward (F) and backward (B) SHG images are vastly different. In addition, despite the different arrangement of the collagen Type I fibrillar architecture forming these two fascias, their ratios of forward over backward signal (F/B) are nearly equal. SHG images of thick tissue blocks of the fascia-muscle unit show only backward features, as opposed to SHG images of tissue blocks of the fascia-tendon unit. These images are an amalgamation of forward and backward features due to the backscattering of forward components within tendon. These forward features disappear when this tissue block is immersed in glycerol as backscattering is hereby suppressed.

© 2007 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 3, 2007
Revised Manuscript: May 15, 2007
Manuscript Accepted: May 16, 2007
Published: May 30, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Christian P. Pfeffer, Bjorn R. Olsen, and François Légaré, "Second harmonic generation imaging of fascia within thick tissue block," Opt. Express 15, 7296-7302 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248,73-76 (1990). [CrossRef] [PubMed]
  2. V. E. Centonze and J. G. White, "Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging," Biophys. J. 75,2015-2024 (1998). [CrossRef] [PubMed]
  3. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Meth. 2,932-940 (2005). [CrossRef]
  4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100,7075-7080 (2003). [CrossRef] [PubMed]
  5. C. Stociek, O. Garaschuk, K. Holthoff, and A. Konnerth, "In vivo two-photon calcium imaging of neuronal networks," Proc. Natl. Acad. Sci. USA 100,7319-7324 (2003). [CrossRef]
  6. K. Svoboda and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron. 50,823-839 (2006). [CrossRef] [PubMed]
  7. K. W. Dunn and P. A. Young, "Principles of multiphoton microscopy," Nephron Exp Nephrol. 103, 33-40 (2006). [CrossRef]
  8. S. Roth and I. Freund, "Second harmonic generation in collagen," J. Chem. Phys. 70,1637-1643 (1979). [CrossRef]
  9. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003). [CrossRef] [PubMed]
  10. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99,11014-11019 (2002). [CrossRef] [PubMed]
  11. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R.K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9,796-800 (2003). [CrossRef] [PubMed]
  12. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88,1377-1386 (2005). [CrossRef]
  13. S. Zhuo, J. Chen, T. Luo, and D. Zou, "Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode," Opt. Express 14,7810-7820 (2006). [CrossRef] [PubMed]
  14. T. Boulesteix, E. Beaurepaire, M.-P. Sauviat, and M.-C. Schanne-Klein, "Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy," Opt. Lett. 29,2031-2033 (2004). [CrossRef] [PubMed]
  15. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T. H. Tsai, Y. C. Chen, B.-L. Lin, and C.-K. Sun, "Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86,3914-3922 (2004). [CrossRef] [PubMed]
  16. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres", Biophys. J. 90,693-703 (2006). [CrossRef]
  17. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82,493-508 (2002). [CrossRef]
  18. R. W. Boyd, Nonlinear optics (Academic Press, London, 2003), pp. 87-99.
  19. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25,320-322 (2000). [CrossRef]
  20. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80,1568-1574 (2001). [CrossRef] [PubMed]
  21. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, "Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosection," Biophys. J. 91,4665-4677 (2006). [CrossRef] [PubMed]
  22. W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, h7ttp://rsb.info.nih.gov/ij/ (1997-2007).
  23. P. P. Provenzano and R. Jr. Vanderby, "Collagen fibril morphology and organization: implications for force transmission in ligaments and tendon," Matrix Biol. 25,71-84 (2006). [CrossRef]
  24. N. B. Grover and S. Shoshan, "Three-dimensional organization of collagen fibres in tendon," Tissue cell. 12,523-528 (1980). [CrossRef] [PubMed]
  25. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29,1090-1092 (2004). [CrossRef] [PubMed]
  26. J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Comm. 196, 325-330 (2001). [CrossRef]
  27. D. Débarre, W. Suppato, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Meth. 3,47-53 (2006). [CrossRef]
  28. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102,16807-16812 (2005). [CrossRef] [PubMed]
  29. B. Chan, C. Amann, A. Yaroslavsky, C. Title, D. Smink, B. Zarins, I. Kochevar, and R. Redmond, "Photochemical repair of Achilles tendon rupture in a rat model," J. Surg. Res. 124,274-279 (2005). [CrossRef] [PubMed]
  30. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," App. Opt. 37,798-804 (1998). [CrossRef]
  31. I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," App. Opt. 34,7410-7418 (1995). [CrossRef]
  32. A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, "Reversible dissociation of collagen in tissues," J. Invest. Dermatol. 121,1332-1335 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited