OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing image-guided core-needle biopsy

Bing Yu, Elizabeth S. Burnside, Gale A. Sisney, Josephine M. Harter, Changfang Zhu, Al-Hafeez Dhalla, and Nirmala Ramanujam  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7335-7350 (2007)
http://dx.doi.org/10.1364/OE.15.007335


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a side-firing fiber optic sensor based on near-infrared spectroscopy for guiding core needle biopsy diagnosis of breast cancer. The sensor is composed of three side firing optical fibers (two source fibers and one detection fiber), providing two source-detector separations. The entire assembly is inserted into a core biopsy needle, allowing for sampling to occur at the biopsy site. A multi-wavelength frequency-domain near-infrared instrument is used to collect diffuse reflectance in the breast tissue through an aperture on the biopsy needle before the tissue is removed for histology. Preliminary in vivo measurements performed on 10 normal or benign breast tissues from 5 women undergoing stereo- or ultrasound-guided core needle biopsy show the ability of the system to determine tissue optical properties and constituent concentrations, which are correlated with breast tissue composition derived from histopathology.

© 2007 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4730) Medical optics and biotechnology : Optical pathology
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 30, 2007
Revised Manuscript: May 24, 2007
Manuscript Accepted: May 30, 2007
Published: May 31, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Bing Yu, Elizabeth S. Burnside, Gale A. Sisney, Josephine M. Harter, Changfang Zhu, Al-Hafeez Dhalla, and Nirmala Ramanujam, "Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing imageguided core-needle biopsy," Opt. Express 15, 7335-7350 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-12-7335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. SUROS News Release, "New method for breast cancer diagnosis" (Suros Surgical Systems, Inc., 2003). http://www.surossurgical.com/pdf/PressReleases/2003/OctoberCampaign2003.pdf.
  2. L. L. Fajardo, "Cost-effectiveness of stereotaxic breast core needle biopsy," Acad. Radiol. 3, S21-S23 (1996). [CrossRef] [PubMed]
  3. L. Liberman, M. C. Fahs, D. D. Dershaw, E. Bonaccio, A. F. Abramson, M. A. Cohen, and L. E. Hann, "Impact of stereotaxic core breast biopsy on cost of diagnosis," Radiology 195, 633-637 (1995). [PubMed]
  4. C. H. Lee, T. K. Egglin, L. Philpotts, M. B. Mainiero, and I. Tocino, "Cost-effectiveness of stereotactic core needle biopsy: analysis by means of mammographic findings," Radiology 202, 849-854 (1997). [PubMed]
  5. L. Liberman, T. L. Feng, D. D. Dershaw, E. A. Morris, and A. F. Abramson, "US-guided core breast biopsy: use and cost-effectiveness," Radiology 208, 717-723 (1998). [PubMed]
  6. R. R. White, T. J. Halperin, J. A. J. Olson, M. S. Soo, R. C. Bentley, and H. F. Seigler, "Impact of core-needle breast biopsy on the surgical management of mammographic abnormalities," Ann. Surg. 233, 769-777 (2001). [CrossRef] [PubMed]
  7. E. Rubin, P. Dempsey, N. Pile, W. Bernreuter, M. Urist, C. Shumate, and W. Maddox, "Needle-localization biopsy of the breast: impact of a selective core needle biopsy program on yield," Radiology 195, 627-631 (1995). [PubMed]
  8. L. Liberman, L. R. LaTrenta, and D. D. Dershaw, "Impact of core biopsy on the surgical management of impalpable breast cancer: another look at margins," AJR Am J Roentgenol. 169, 1464-1465 (1997). [PubMed]
  9. L. Liberman, L. R. LaTrenta, D. D. Dershaw, A. F. Abramson, E. A. Morris, M. A. Cohen, P. P. Rosen, and P. I. Borgen, "Impact of core biopsy on the surgical management of impalpable breast cancer," AJR Am J Roentgenol. 168, 495-499 (1997). [PubMed]
  10. D. N. Smith, R. Christian, and J. E. Meyer, "Large-core needle biopsy of nonpalpable breast cancers. The impact on subsequent surgical excisions," Arch. Surg. 132, 256-259 (1997). [CrossRef] [PubMed]
  11. R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up " Radiology 210, 799-805 (1999). [PubMed]
  12. H. Singhal, L. M. Lai, and W. Teh "Breast, stereotactic core biopsy/fine needle aspiration" (EMedicine, 2005). http://www.emedicine.com/radio/topic768.htm
  13. G. Vlastos and H. M. Verkooijen, "Minimally invasive approaches for diagnosis and treatment of early-stage breast cancer," The Oncologist 12, 1-10 (2007). [CrossRef] [PubMed]
  14. J. Meyer, D. Smith, S. Lester, P. DiPiro, C. Denison, S. Harvey, R. Christian, A. Richardson, and W. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998). [PubMed]
  15. D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy "Radiology 198, 323-325 (1996). [PubMed]
  16. ECRI Report, "Breast biopsy more effective in detecting cancer than noninvasive diagnostic tests" (ECRI, Oct. 16, 2006). http://www.medicalnewstoday.com/medicalnews.php?newsid=38967
  17. D. Prate "Mammograms cause breast cancer (and other cancer facts you probably never knew)" (NewsTarget Network, 2005). http://www.newstarget.com/010886.html
  18. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  19. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Rev. Sci. Instrum. 69, 3457-81 (1998). [CrossRef]
  20. B. Pogue and M. Patterson, "Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory," Phys. Med. Biol. 39, 1157-1180 (1994). [CrossRef] [PubMed]
  21. S. Hansen, D. A. Grabau, F. B. Sørensen, M. Bak, W. Vach, and C. Rose, "Vascular grading of angiogenesis: prognostic significance in breast cancer," Br. J. Cancer 82, 339-347 (2000). [PubMed]
  22. F. Tas, E. Yavuz, A. Aydiner, P. Saip, R. Disci, A. Iplikci, and E. Topuz, "Angiogenesis and p53 protein expression in breast cancer: prognostic roles and interrelationships," Am. J. Clin. Oncol. 23, 546-553 (2000).
  23. P. Vaupel, K. Schlenger, C. Knoop, and M. Hockel, "Oxygenation of human tumors: evaluation of tissue oxygen distribution inbreast cancers by computerized O2 tension measurements," Cancer Res. 51, 3316-3322 (1991). [PubMed]
  24. P. Vaupel, K. Schlenger, M. Hoeckel, and P. Okunieff, "Oxygenation of mammary tumors: from isotransplanted rodent tumors to primary malignancies in patients," Adv. Exp. Med. Biol. 316, 361-371 (1992). [CrossRef] [PubMed]
  25. P. Vaupel and M. Hockel, "Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance," Int. J. Oncol. 17, 869-879 (2000). [PubMed]
  26. N. Jagannathan, M. Kumar, V. Seenu, O. Coshic, S. Dwivedi, P. Julka, A. Srivastava, and G. Rath, "Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer," Br. J. Cancer 84,1016-1022 (2001). [CrossRef] [PubMed]
  27. C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, "Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size," Opt. Lett. 32, 933-935 (2007). [CrossRef] [PubMed]
  28. A. E. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006). [CrossRef] [PubMed]
  29. K. T. Moesta, H. J. S. Fantini, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, "Contrast Features of Breast Cancer in Frequency-Domain Laser Scanning Mammography," J. Biomed. Opt. 3,129-136 (1998). [CrossRef]
  30. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  31. D. B. Jakubowski, A. E. Cerussi, F. E. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study," J. Biomed. Opt. 9, 230-238 (2004). [CrossRef] [PubMed]
  32. B. J. Tromberg, A. E. Cerussi, S. N, M. Compton, A. Durkin, H. D, B. J, and R. Mehta, "Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy," Breast Cancer Res. 7, 276-278 (2005). [CrossRef]
  33. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  34. N. Shah, A. E. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, "Noninvasive functional optical spectroscopy of human breast tissue," PNAS 98, 4420-4425 (2001). [CrossRef] [PubMed]
  35. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad Radiol. 8, 211-218 (2001).
  36. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  37. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequencydomain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  38. C. Lubawy and N. Ramanujam, "Endoscopically compatible near-infrared photon migration probe," Opt. Lett. 29, 2022-2024 (2004). [CrossRef] [PubMed]
  39. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Rev. Sci. Instrum. 71, 2500-2513 (2000). [CrossRef]
  40. S. Fantini and M. A. Franceschini, Frequency-Domain Techniques for Tissue Spectroscopy and Imaging, in Handbook of optical biomedical diagnostics, V. V. Tuchin, ed., (SPIE Press, Bellingham, Washington, 2002).
  41. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  42. J. B. Fishkin, P. T. C. So, A. E. Cerussi, E. Gratton, S. Fantini, and M. A. Franceschini, "Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom," Appl. Opt. 34, 1143-1155 (1995). [CrossRef] [PubMed]
  43. Z. Sun, Y. Huang, and E. M. Sevick-Muraca, "Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions," Rev. Sci. Instrum. 73, 383-393 (2002). [CrossRef]
  44. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  45. R. Choe, Diffuse optical tomography and spectroscopy of breast cancer and fetal brain, in Physics and Astronomy. 2005, University of Pennsylvania: Philadelphia. [PubMed]
  46. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, "Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women," J. Biomed. Opt. 1, 330-334 (1996). [CrossRef]
  47. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004). [CrossRef] [PubMed]
  48. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy," Phys. Med. Biol. 50, 2559-2571 (2005). [CrossRef] [PubMed]
  49. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000). [PubMed]
  50. R. L. P. v. Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004). [CrossRef] [PubMed]
  51. S. Thomsen and D. Tatman, "Physiological and Pathological factors of human breast disease that can influence optical diagnosis," Ann. NY Acad. Sci. 838, 171-193 (1998). [CrossRef] [PubMed]
  52. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," PNAS 103, 8828-8833 (2006). [CrossRef] [PubMed]
  53. H. S. Feigelson, C. R. Jonas, L. R. Teras, M. J. Thun, and E. E. Calle, "Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study," Cancer Epidemiol Biomarkers Prev. 13, 220-224 (2004). [CrossRef] [PubMed]
  54. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  55. M. K. Simick and L. Lilge, "Optical transillumination spectroscopy to quantify parenchymal tissue density: an indicator for breast cancer risk," Br. J. Radiol. 78, 1009-1017 (2005). [CrossRef] [PubMed]
  56. M. K. Simick, R. Jong, B. Wilson, and L. Lilge, "Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk," J. Biomed. Opt. 9, 794-803 (2004). [CrossRef] [PubMed]
  57. A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. Tsiftsis, E. Stathopoulos, M. Kafousi, J. Ripoll, and T. Papazoglou, "Optical characterization of thin female breast biopsies based on the reduced scattering coefficient," Phys. Med. Biol. 50, 2583-2596 (2005). [CrossRef] [PubMed]
  58. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," PNAS 100, 12349-12354 (2003). [CrossRef] [PubMed]
  59. B. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. Tosteson, S. Poplack, and K. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  60. S. Srinivasan, B. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. Gibson, T. Tosteson, S. Poplack, and K. Paulsen, "In Vivo Hemoglobin and Water Concentrations, Oxygen Saturation, and Scattering Estimates From Near-Infrared Breast Tomography Using Spectral Reconstruction," Acad. Radiol. 13, 195-202 (2006). [CrossRef] [PubMed]
  61. A. Bassi, L. Spinelli, C. D’Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 054035 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited