OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field

Matthew T. Sheehan, Alexander V. Goncharov, Veronica M. O’Dwyer, Vincent Toal, and Christopher Dainty  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7367-7380 (2007)
http://dx.doi.org/10.1364/OE.15.007367


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present data analysis for ocular aberrations of 60 normal eyes measured with a Hartmann-Shack (HS) wavefront sensor (WFS). Aberration measurements were made on-axis and at 5 degree field angles in the nasal, inferior, temporal and superior semi-meridians. Particular attention is given to aberration distributions and possible strategies for aberration correction are discussed. A versatile HS WFS was designed and constructed with features of simultaneous pupil centre determination, off-axis capability, real-time data displays, and efficient lenslet sampling orientation. The subject alignment is achieved by the use of a parallel channel that is recombined with the sensing channel to simultaneously image the eye and the HS spots onto a single CCD. The pupil centre is determined using this image of the eye (iris edge), rather than the HS spots. The optical design includes a square lenslet array positioned with its diagonals aligned with the most typical principal astigmatic meridians of the eye. This favourable orientation helps to enlarge the dynamic range of the WFS. The telecentric re-imaging of the HS spots increases the robustness of the system to defocus in the event of CCD misalignment.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision and color

History
Original Manuscript: April 3, 2007
Revised Manuscript: May 10, 2007
Manuscript Accepted: May 25, 2007
Published: May 31, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Matthew T. Sheehan, Alexander V. Goncharov, Veronica M. O'Dwyer, Vincent Toal, and Christopher Dainty, "Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field," Opt. Express 15, 7367-7380 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-12-7367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. .J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  2. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002). [CrossRef]
  3. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  4. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004). [CrossRef]
  5. A. Guirao and P. Artal, "Off-axis monochromatic aberrations estimated from double pass measurements in the human eye," Vision Res. 39, 207-217 (1999). [CrossRef] [PubMed]
  6. L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005). [CrossRef]
  7. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998). [CrossRef]
  8. D. A. Atchison and D. H. Scott, "Monochromatic aberrations of human eyes in the horizontal visual field," J. Opt. Soc. Am. A 19, 2180-2184 (2002). [CrossRef]
  9. D. A. Atchison, D. H. Scott, and W. N. Charman, "Hartmann-Shack technique and refraction across the horizontal visual field," J. Opt. Soc. Am. A 20, 965-973 (2003). [CrossRef]
  10. D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 335-359 (2004). [CrossRef]
  11. M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).
  12. A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," accepted for publication in JOSA A.
  13. J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005). [CrossRef]
  14. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000).
  15. C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).
  16. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  17. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003) [CrossRef]
  18. D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).
  19. L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007). [CrossRef]
  20. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  21. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001). [CrossRef] [PubMed]
  22. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004). [CrossRef] [PubMed]
  23. J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005). [CrossRef]
  24. P. Artal and A. Guirao, "Contributions of the cornea and the lens to the aberrations of the human eye," Opt. Lett. 23, 1713-1715 (1998). [CrossRef]
  25. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001). [CrossRef]
  26. P. Artal, E. Berrio, A Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  27. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 620-628 (2002). [CrossRef]
  28. J. A. M. Jennings, and W. N. Charman, "Off-axis image quality in the human eye," Vision Res. 21, 445-455 (1981). [CrossRef] [PubMed]
  29. A. Bradley, and L. N. Thibos, "Modeling off-axis vision - I: the optical effects of decentering visual targets or the eye's entrance pupil," in Vision Models for Target Detection and Resolution, E. Peli, ed., (World Scientific Press, 1995), pp. 313-337.
  30. S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003). [CrossRef]
  31. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited