OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Liquid-crystal intraocular adaptive lens with wireless control

Aleksey N. Simonov, Gleb Vdovin, and Mikhail Loktev  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7468-7478 (2007)
http://dx.doi.org/10.1364/OE.15.007468


View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively. Adaptive correction of ocular aberrations is achieved by changing the amplitude and the frequency of the applied control voltage. The convex-shaped glass substrates provide the required initial focusing power of the lens. A loop antenna mounded on the rim of the lens delivers an amplitude-modulated radio-frequency control signal to the integrated rectifier circuit that drives the liquid-crystal modal corrector. In vitro measurements of a 5-mm clear aperture prototype with an initial focusing power of +12.5 diopter, remotely driven by a radio-frequency control unit at ~6 MHz, were carried out using a Shack-Hartmann wave-front sensor. The lens based on a 40-μm thick liquid-crystal layer allows for an adjustable defocus of 4 waves, i. e. an accommodation of ~2.51 dioptres at a wavelength of 534 nm, and correction of spherical aberration coefficient ranging from -0.8 to 0.67 waves. Frequency-switching technique was employed to increase the response speed and eliminate transient overshoots in aberration coefficients. The full-scale settling time of the adaptive modal corrector was measured to be ~4 s.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(230.3720) Optical devices : Liquid-crystal devices
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Adaptive Optics

History
Original Manuscript: May 1, 2007
Revised Manuscript: May 20, 2007
Manuscript Accepted: May 22, 2007
Published: June 1, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Aleksey N. Simonov, Gleb Vdovin, and Mikhail Loktev, "Liquid-crystal intraocular adaptive lens with wireless control," Opt. Express 15, 7468-7478 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-12-7468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000). [CrossRef] [PubMed]
  2. T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002). [PubMed]
  3. H. B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26 (2005). [CrossRef] [PubMed]
  4. A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003). [CrossRef]
  5. S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005). [CrossRef]
  6. S.  Masket, "Accommodating IOLs: emerging concepts and design," Cataract and Refract. Surg. Today, 32-36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.
  7. R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993). [PubMed]
  8. P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992). [CrossRef] [PubMed]
  9. T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).
  10. T.  Terwee, "Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],"presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.
  11. A. N.  Simonov, G.  Vdovin, and M. C.  Rombach, "Cubic optical elements for an accommodative intraocular lens," Opt. Express 14, 7757-7775 (2006). [CrossRef] [PubMed]
  12. K. N.  Ogle, "On the resolving power of the human eye," J. Opt. Soc. Am. 41, 517-520 (1951). [CrossRef] [PubMed]
  13. J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994). [CrossRef]
  14. G.-Y.  Yoon and D. R.  Williams, "Visual performance after correcting the monochromatic and chromatic aberrations of the eye," J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  15. G.  Vdovin, M.  Loktev and A.  Naumov, "On the possibility of intraocular adaptive optics," Opt. Express 11, 810-817 (2003). [CrossRef] [PubMed]
  16. A. F.  Naumov, M. Yu.  Loktev, I. R.  Guralnik, and G.  Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. 23, 992-994 (1998). [CrossRef]
  17. A. F.  Naumov, G. D.  Love, M. Yu.  Loktev, and F. L.  Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4, 344-352 (1999). [CrossRef] [PubMed]
  18. M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000). [CrossRef]
  19. T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000). [CrossRef]
  20. IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1-1991.
  21. P.  Röschmann, "Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys. 14, 922-931 (1987). [CrossRef] [PubMed]
  22. M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974). [CrossRef]
  23. http://www.okotech.com/sensors/.
  24. R.  Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  25. H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004). [CrossRef]
  26. M. Loktev, "Modal wavefront correctors based on nematic liquid crystals," Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2005).
  27. O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971). [PubMed]
  28. O.  Pomerantzeff, P.  Dufault, and R.  Goldstein, "Wide-angle optical model of the eye," in Advances in Diagnostic Visual Optics, G. M. Breinin and I. M. Siegel, eds., (Springer-Verlag, Berlin, 1983).
  29. D.  Malacara and M.  Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).
  30. J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004). [CrossRef]
  31. A. K.  Kirby and G. D.  Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12, 1470-1475 (2004). [CrossRef] [PubMed]
  32. B.  Simon-Hettich and W.  Becker, "Toxicological investigations of liquid crystals," presented at 28th Freiburg Workshop on Liquid Crystals; Freiburg, Germany, 1999.
  33. W.  Becker, B.  Simon-Hettich, and P.  Hnicke, "Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds," Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).
  34. J.  Bruines, "Process outlook for analog and rf applications," Microelectr. Engineer. 54, 35-48 (2000). [CrossRef]
  35. S. P.  Kotova, M. Yu.  Kvashnin, M. A.  Rakhmatulin, O. A. Zayakin, I. G.  Guralnik, N. A.  Klimov, P.  Clark, G. D.  Love, A. F.  Naumov, C. D.  Saunter, M. Yu.  Loktev, G. V.  Vdovin, and L. V.  Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002). [PubMed]
  36. G. V.  Vdovin, I. R.  Guralnik, M. Y.  Loktev, A. F.  Naumov, and S. V.  Sheenkov, "Dynamic method for control of wavefront shape of a light beam and device for its realization," Russian patent 2214617, December 1999 (in Russian).
  37. http://www.biosemi.com/publications.htm>
  38. G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited