OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography

Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Miura, Soohyun Kim, Toyohiko Yatagai, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7538-7550 (2007)
http://dx.doi.org/10.1364/OE.15.007538


View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scattering optical coherence angiography (S-OCA) is a noninvasive imaging method that is based on the high-speed standard 800nm band spectral-domain optical coherence tomography (SD-OCT) and the ultra-high-resolution SD-OCT which has the axial resolution of 6.1 μm and 2.9 μm in tissue, respectively. In this paper, we have demonstrated the use of this method for in vivo human retinal imaging. A three-dimensional view of the choroidal vasculature was obtained by segmenting the choroidal vessels; this was done using intensity threshold based binarization at each depth plane relative to the retinal pigment epithelium. A vascular projection image was obtained by integrating the segmented choroidal vasculature. In order to assess the feasibility of the proposed method, we compared these images with those obtained using existing invasive methods such as fluorescein angiography and indocyanine green angiography. Clinically worthful images are obtained from the application of S-OCA to the age-related macular degeneration and polypoidal choroidal vasculopathy.

© 2007 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 22, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 3, 2007
Published: June 5, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Youngjoo Hong, Shuich Makita, Masahiro Yamanari, Masahiro Miura, Soohyun Kim, Toyohiko Yatagai, and Yoshiaki Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-12-7538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefansson,"The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359−393 (2002). [CrossRef] [PubMed]
  2. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, "Retinal blood flow in diabetic retinopathy," BMJ 305, 678-683 (1992). [CrossRef] [PubMed]
  3. E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997). [PubMed]
  4. J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed., (Mosby, 1997).
  5. K. A. Kwiterovich, M. G. Maguire, R. P. Murphy, A. P. Schachat, N. M. Bressler, S. B. Bressler, and S. L. Fine, "Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective stud," Ophthalmology 98, 1139−1142 (1991). [PubMed]
  6. M. Hope-Ross, L. Yannuzzi, E. Gragoudas, D. Guyer, J. Slakter, J. Sorenson, S. Krupsky, D. Orlock, and C. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994). [PubMed]
  7. D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  9. G. Häusler and M. W. Lindner, "Coherence rader" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
  10. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000). [CrossRef]
  11. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  12. R. Leitgeb, L. F. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, andd A. F. Fercher, "Flow velocity measurements by frequency domain short coherence interferometry," Proc. SPIE 4619,16-21 (2002). [CrossRef]
  13. B. R. White, M. C. Pierce, N. A. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490 (2003). [CrossRef] [PubMed]
  14. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003). [PubMed]
  15. S. Makita, Y. J. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef] [PubMed]
  16. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattman, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). [CrossRef] [PubMed]
  17. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroids," Opt. Express 13, 3252-3258 (2005). [CrossRef] [PubMed]
  18. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). [CrossRef] [PubMed]
  19. M. Hammer, A. Roggan, D. Schweitzer and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995). [CrossRef] [PubMed]
  20. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  21. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). [CrossRef] [PubMed]
  22. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  23. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker," Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  24. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef] [PubMed]
  25. American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  26. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006). [CrossRef] [PubMed]
  27. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef] [PubMed]
  28. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1390 KB)     
» Media 2: AVI (1457 KB)     
» Media 3: AVI (2528 KB)     
» Media 4: AVI (2510 KB)     
» Media 5: AVI (1978 KB)     
» Media 6: AVI (1966 KB)     
» Media 7: AVI (2552 KB)     
» Media 8: AVI (2537 KB)     
» Media 9: AVI (2031 KB)     
» Media 10: AVI (2002 KB)     
» Media 11: AVI (1911 KB)     
» Media 12: AVI (5013 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited