OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection

Chuanmao Fan, Yi Wang, and Ruikang K. Wang  »View Author Affiliations


Optics Express, Vol. 15, Issue 13, pp. 7950-7961 (2007)
http://dx.doi.org/10.1364/OE.15.007950


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a spectral domain polarization sensitive optical coherence tomography (PSOCT) system that incorporates: 1) a spectrometer configured with a single line-scan camera for spectral interferogram detection, 2) a reference delay line assembly that provides a fixed optical pathlength delay between the lights of two orthogonal polarization states, and 3) a moving reference mirror that introduces a constant modulation frequency in the spatial spectral interferograms while the probe beam is scanned over the sample. The system utilizes the full range of complex Fourier plane for polarization sensitive imaging, where OCT images formed by the vertical and horizontal polarization beam components appear adjacent to each other. It is able to provide imaging of retardation, fast optic axis and backscattered intensity of the interrogated biological tissue. The system is experimentally demonstrated both in vitro and in vivo with an imaging rate at 10,000 A scans per second.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 6, 2007
Revised Manuscript: May 22, 2007
Manuscript Accepted: May 24, 2007
Published: June 11, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Chuanmao Fan, Yi Wang, and Ruikang K. Wang, "Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection," Opt. Express 15, 7950-7961 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-13-7950


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science  254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A.F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys.  66, 239-303 (2003). [CrossRef]
  3. P. H. Tomlins and R. K. Wang, "Theory, development and applications of optical coherence tomography," J Phys. D: Appl. Phys. 38, 2519-2535 (2005). [CrossRef]
  4. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization sensitive low coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  5. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  6. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999). [CrossRef]
  7. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  8. S. L. Jiao and L. H. V. Wang, "Jones-matrix imaging of biological tissues with quadruple- channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002). [CrossRef] [PubMed]
  9. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001). [CrossRef] [PubMed]
  10. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, "Imaging thermally damaged tissue by polarization sensitive optical coherence tomography," Opt. Express 3, 212-218 (1998). [CrossRef] [PubMed]
  11. K. Schoenenberger, J. B. W. Colston, D. J. Maitland, L. B. Da Silva, andM. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998). [CrossRef]
  12. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging," Appl. Opt. 42, 5191-5197 (2003). [CrossRef] [PubMed]
  13. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004). [CrossRef] [PubMed]
  14. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, "Determination of burn depth by polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 207-212 (2004). [CrossRef] [PubMed]
  15. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000). [CrossRef]
  16. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," J. Biomed. Opt. 7, 618-627 (2002). [CrossRef] [PubMed]
  17. Y. Chen, L. Otis, D. Piao, and Q. Zhu, "Characterization of dentin, enamel, and carious lesions by a polarization sensitive optical coherence tomography system," Appl. Opt. 44, 2041-2048 (2005). [CrossRef] [PubMed]
  18. R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, "Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography," J. Biomed. Opt 11, 014016 (2006). [CrossRef] [PubMed]
  19. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004). [CrossRef] [PubMed]
  20. E. Götzinger, M . Pircher, M . Sticker, A. F. Fercher, and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004). [CrossRef] [PubMed]
  21. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  22. M. G. Ducros, J. F. de Boer, H. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and I. H. G. Rylander, III, "Polarization sensitive optical coherence tomography of the rabbit eye," IEEE J. Sel. Top. Quantum Electron. 5, 1159-1167 (1999). [CrossRef]
  23. M. G. Ducros, J. D. Marsack, H. G. RylanderIII, S. L. Thomsen, and T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 18, 2945-2956 (2001). [CrossRef]
  24. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004). [CrossRef] [PubMed]
  25. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004). [CrossRef] [PubMed]
  26. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 22, 552-560 (2005). [CrossRef]
  27. W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J.G. Fujimoto, M.E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: Implications for osteoarthritis," J. Rheumatology 28: 1311-1318 (2001)
  28. S. J. Matcher, C. P. Winlove, S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004) [CrossRef] [PubMed]
  29. N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, "The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography," J Phys. D -Appl. Phys. 38, 2612-2619 (2005). [CrossRef]
  30. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, "Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography," Opt. Lett. 31, 2305-2307 (2006) [CrossRef] [PubMed]
  31. T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography," Lasers Surg. Med. 38, 852-865 (2006). [CrossRef] [PubMed]
  32. T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus," J. Biomed. Opt. 11, 05385RR (2006) [CrossRef]
  33. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006). [CrossRef] [PubMed]
  34. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  35. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G.J . Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  36. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  37. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  38. E. Götzinger, M. Pircher, C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). [CrossRef] [PubMed]
  39. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006). [CrossRef] [PubMed]
  40. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001). [CrossRef] [PubMed]
  41. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, "Single camera based spectral domain polarization sensitive optical coherence tomography," Opt. Express,  15, 1054-1063 (2007). [CrossRef] [PubMed]
  42. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007). [CrossRef] [PubMed]
  43. R. K. Wang, "In vivo full range complex Fourier Domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007) [CrossRef]
  44. R. K. Wang, S. L. Jacuqes, Z. Ma, S. Hurst, S. Hanson and A. Gruber, "Three dimensional optical angiography," Opt. Express,  15, 4083-4097 (2007) [CrossRef] [PubMed]
  45. R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). [CrossRef] [PubMed]
  46. C. Dorrer, N. Belabas, J. P. Likforman, M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral Interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  47. G. Hausler, M. W. Lindner, "Coherence radar and Spectral radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998) [CrossRef]
  48. Z. H. Ding, R. W. Ren, Y. H. Zhao, J. S. Nelson, Z. P. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002). [CrossRef]
  49. R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt.  47, 103-120 (2000).
  50. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express  11, 782-793 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2629 KB)      QuickTime
» Media 2: AVI (2588 KB)      QuickTime
» Media 3: AVI (2588 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited