OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Analytical prediction of stable optical trapping in optical vortices created by three TE or TM plane waves

Tomasz M. Grzegorczyk and Jin Au Kong  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8010-8020 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A closed-form analytical expression of the force on an infinite lossless dielectric cylinder due to multiple plane wave incidences is proposed. The formula for a TE polarization is derived and completes our previous work which was limited to TM polarizations. A unified form of the analytical expression of the force is proposed and used to study the curvature of the one dimensional potential of an optical lattice created by the interference of three plane waves. It is shown that the points of zero curvature yield optical vortices which can be used to stably trap particles of particular sizes and index contrasts with the background. Under these circumstances, the trajectories of the particles can be assimilated to spirals whose centers correspond to the points of undetermined phase in the optical landscape.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: April 24, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 6, 2007
Published: June 12, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Tomasz M. Grzegorczyk and Jin Au Kong, "Analytical prediction of stable optical trapping in optical vortices created by three TE or TM plane waves," Opt. Express 15, 8010-8020 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  2. J. F. Nye and J. V. Hajnal, "The wave structure of monochromatic electromagnetic radiation," Proc. R. Soc. London Ser. A 409, 21-36 (1987). [CrossRef]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  4. M. V. Berry, "Optical vortices evolving from helicoidal integer and fractional phase steps," J. Opt. A: Pure Appl. Opt. 6, 259-268 (2004). [CrossRef]
  5. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005). [CrossRef]
  6. A. Jesacher, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Holographic optical tweezers for object manipulations at an air-liquid surface," Opt. Express 14, 6342-6352 (2006). [CrossRef] [PubMed]
  7. K. T. Gahagan and J. G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  9. D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, "Laser trapping and micromanipulation using optical vortices," Microelectron. Eng. 78-79, 125-131 (2005). [CrossRef]
  10. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  11. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical Matter: crystallization and binding in intense optical fields," Science 249, 749-754 (1990). [CrossRef] [PubMed]
  12. J.-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, "Building optical matter with binding and trapping forces," Proc. SPIE 5514, 309-317 (2004). [CrossRef]
  13. T. M. Grzegorczyk and J. A. Kong, "Analytical expression of the force due to multiple TM plane wave incidences on an infinite dielectric cylinder," J. Opt. Soc. Am. B 24, 644-652 (2006). [CrossRef]
  14. J. Masajada and B. Dubik, "Optical vortex generation by three plane wave interference," Opt. Commun. 198, 21-27 (2001). [CrossRef]
  15. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  16. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  17. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Stable optical trapping based on optical binding forces," Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  18. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  19. D. Maystre and P. Vincent, "Making photonic crystals using trapping and binding optical forces on particles," J. Opt. A: Pure Appl. Opt. 8, 1059-1066 (2006). [CrossRef]
  20. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Optical momentum transfer to absorbing Mie particles," Phys. Rev. Lett. 97, 133902 (2006). [CrossRef] [PubMed]
  21. P. Zemanek, V. Karasek, and A. Sasso, "Optical forces acting on Rayleigh particle placed into interference field," Opt. Commun. 240, 401-415 (2004). [CrossRef]
  22. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited