OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces

S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard  »View Author Affiliations


Optics Express, Vol. 15, Issue 13, pp. 8146-8156 (2007)
http://dx.doi.org/10.1364/OE.15.008146


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have observed the motion of metallic particles above various optical waveguides injected by 1064nm radiation. Small gold particles (250nm diameter) are attracted towards the waveguide where the intensity of the optical field is maximum, and are propelled at high velocity (up to 350μm/s) along the waveguide due to radiation pressure. The behaviour of larger metallic particles (diameter >600nm) depends on the polarization of the evanescent field: for TM polarization they are attracted above the waveguide and propelled by the radiation pressure; for TE polarization they are expelled on the side of the waveguide and propelled at much smaller velocity. This is consistent with calculations of radiative forces on metallic particles by Nieto-Vesperinas et al. 3D-finite element method calculations carried out for our experimental situations confirm the observed dependence with the polarization of the field and the size of the particles. These observations open the way to the development of new microsystems for particles manipulations and sorting applications.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Trapping

History
Original Manuscript: March 26, 2007
Revised Manuscript: May 25, 2007
Manuscript Accepted: May 25, 2007
Published: June 14, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
S. Gaugiran, S. Gétin, J. M. Fedeli, and J. Derouard, "Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces," Opt. Express 15, 8146-8156 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-13-8146


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, "Optical trapping and manipulation of neutral particles using laser," Proc. Nat. Acad. Sci. USA 94, 4853-4860 (1997). [CrossRef]
  3. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992). [CrossRef] [PubMed]
  4. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996). [CrossRef] [PubMed]
  5. M. Vilfan, I. Musevic, and M. Copic, "AFM observation of force on a dielectric sphere in the evanescent filed of totally reflected light," Europhys. Lett. 43, 41-46 (1997). [CrossRef]
  6. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philos. Trans. R. Soc. London, Ser. A 362, 719-737 (2004). [CrossRef]
  7. K. Sasaki, J. I. Hotta, K. I. Wada, and H. Masuhara, "Analysis of radiation pressure exerted on a metallic particle within an evanescent field," Opt. Lett. 25, 1385-1388 (2000). [CrossRef]
  8. L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 76, 1993-1995 (2000). [CrossRef]
  9. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002). [CrossRef]
  10. H. Y. Jaising and O. G. Helleso, "Radiation forces on a Mie particle in the evanescent field of an optical waveguide," Opt. Commun. 246, 373-383 (2005). [CrossRef]
  11. J. P. Hole, J. S. Wilkinson, K. Grujic, and O. G. Helleso, "Velocity distribution of gold nanoparticles trapped on an optical waveguide," Opt. Express 13, 3896-3901 (2005). [CrossRef] [PubMed]
  12. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express,  13, 6956-6963 (2005). [CrossRef] [PubMed]
  13. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  14. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallic nanocylinders on surfaces: Polarization dependence and plasmon resonance conditions," Opt. Lett. 27,2149-2151 (2002). [CrossRef]
  15. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, "Optical forces on small particles: Attractive and repulsive nature and plamon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  16. K. Grujic, O. G. Helleso, J. S. Wilkinson, and J. P. Hole, "Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass," Opt. Commun. 239, 227-235 (2004). [CrossRef]
  17. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979). [CrossRef]
  18. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E.A. Palik, ed., (Academic Press, Fla., 1985).
  19. J. D. Jackson, Classical electrodynamics, (Wiley, New-York 3rd ed. 1999).
  20. K. Svoboda and S. M. Block, "Optical trapping of metallic rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  21. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66, 195405-1 195405-11 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1919 KB)     
» Media 2: MPG (778 KB)     
» Media 3: MPG (868 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited