OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans

Frederic Bourgeois and Adela Ben-Yakar  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8521-8531 (2007)
http://dx.doi.org/10.1364/OE.15.008521


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study characterizing the properties of femtosecond laser nanosurgery applied to individual axons in live Caenorhabditis elegans (C. elegans) using nano-Joule laser pulses at 1 kHz repetition rate. Emphasis is placed on the characterization of the damage threshold, the extent of damage, and the statistical rates of axonal recovery as a function of laser parameters. The ablation threshold decreases with increasing number of pulses applied during nanoaxotomy. This dependency suggests the existence of an incubation effect. In terms of extent of damage, the energy per pulse is found to be a more critical parameter than the number of pulses. Axonal recovery improves when surgery is performed using a large number of low energy pulses.

© 2007 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.1020) Medical optics and biotechnology : Ablation of tissue
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 8, 2007
Revised Manuscript: May 14, 2007
Manuscript Accepted: June 5, 2007
Published: June 25, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Frederic Bourgeois and Adela Ben-Yakar, "Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans," Opt. Express 15, 8521-8531 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-14-8521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P.J. Horner and F.H. Gage, "Regenerating the damaged central nervous system," Nature 407, 963-970 (2000). [CrossRef] [PubMed]
  2. M. Kerschensteiner, M.E. Schwab, J.W. Lichtman and T. Misgeld, "In vivo imaging of axonal degereneration and regeneration in the injured spinal cord," Nature Med. 11(5), 572-577 (2005).
  3. D.H. Bhatt, S.J. Otto, B. Depoister and J.R. Fetcho, "Cyclic AMP-induced repair of zebrafish spinal circuits," Science 305, 254-258 (2004). [CrossRef] [PubMed]
  4. W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).
  5. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 882 (2004). [CrossRef]
  6. M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky and A.M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). [CrossRef]
  7. V. Venugopalan, A. GuerraIII, K. Hahen and A. Vogel, "Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation," Phys. Rev. Lett. 88, 078103 (2002). [CrossRef] [PubMed]
  8. A. Vogel, J. Noack, G. Hüttman and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," App. Phys. B, 10.1007 (2005). [CrossRef]
  9. K. König, W. Riemann and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001). [CrossRef]
  10. U.K. Tirlapur and K. König, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002). [CrossRef] [PubMed]
  11. N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber and E. Mazur, "Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor," Mech. Chem. Biosyst. 2, 17 (2005).
  12. A. Heisterkamp, I. Zaharieva Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar and D. E. Ingber, "Pulse energy dependence of subcellular dissection by femtosecond laser pulses," Opt. Express 13, 3690-3696 (2005). [CrossRef] [PubMed]
  13. S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur and A.D.T. Samuel, "The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation," BMC Neuro. 7:30 (2006).
  14. W. Watanabe and N. Arakawa, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12 (18), 4203-4213 (2004). [CrossRef] [PubMed]
  15. S. Brenner, "The genetics of behaviour," Brit. Med. Bull. 29, 269-271 (1973). [PubMed]
  16. X. Huang, H.J. Cheng, M. Tessier-Lavigne, Y. Jin, "MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion" Neuron 34, 563-576 (2002). [CrossRef] [PubMed]
  17. J.G. White, F. Southgate, J.N. Thomson and S. Brenner, "The structure of the nervous system of the nematode Caenorhabditis elegans." Phil. Trans. Royal Soc. London Series B. Bio.Scien. 314, 1-340 (1986). [CrossRef]
  18. M. Chalfie, "The differentiation and function of the touch receptor neurons of Caenorhabditis elegans" Prog. Brain. Res. 105, 179-82 (1995). [CrossRef] [PubMed]
  19. M. Driscoll and M. Chalfie, "The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration." Nature 349, 588-593 (1991). [CrossRef] [PubMed]
  20. H. Urey, "Spot size, depth of focus and diffraction ring intensity formulas for truncated Gaussian beams." App. Phys. 43 (3), 620-625 (2004).
  21. J.B. Guild, C. Xu and W.W. Webb, "Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence" Appl. Opt. 36 (1), 397-401 (1997). [CrossRef] [PubMed]
  22. F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin and A. Ben-Yakar, "Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy," IEEE J. Sel. Top. Quantum Electron. 12 (6) (2006).
  23. A. Waller, "Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibers," Philos Trans R Soc Lond Biol. 140, 423 (1850). [CrossRef]
  24. B. Beirowski,R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester and M.P. Coleman, "The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves," BMC Neurosci. 6 (6), (2005). [CrossRef] [PubMed]
  25. A. Rosenfeld, M. Lorenz, R. Stoian and D. Ashkenasi, "Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation." Appl. Phys. A 69 [Suppl.], S373-S376 (1999). [CrossRef]
  26. Y. Lee, M.F. Becker and R.M. Walser, "Laser-induced damage on single-crystal metal surfaces." J. Opt. Soc. Am. B Vol. 5No.3, 648-659 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited