OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy

A. Cvitkovic, N. Ocelic, and R. Hillenbrand  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8550-8565 (2007)
http://dx.doi.org/10.1364/OE.15.008550


View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanometer-scale mapping of complex optical constants by scattering-type near-field microscopy has been suffering from quantitative discrepancies between the theory and experiments. To resolve this problem, a novel analytical model is presented here. The comparison with experimental data demonstrates that the model quantitatively reproduces approach curves on a Au surface and yields an unprecedented agreement with amplitude and phase spectra recorded on a phonon-polariton resonant SiC sample. The simple closed-form solution derived here should enable the determination of the local complex dielectric function on an unknown sample, thereby identifying its nanoscale chemical composition, crystal structure and conductivity.

© 2007 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.5810) Microscopy : Scanning microscopy
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Microscopy

History
Original Manuscript: March 28, 2007
Revised Manuscript: May 6, 2007
Manuscript Accepted: May 10, 2007
Published: June 25, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-14-8550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zenhausern, M. Oboyle, and H. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  2. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  3. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda/600," Opt. Lett. 21, 1315-1317 (1996). [CrossRef] [PubMed]
  4. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. Lond. Ser. A-Math.Phys. Eng. Sci. 362, 787-805 (2004). [CrossRef]
  5. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999). [CrossRef]
  6. O. J. F. Martin and C. Girard, "Controlling and tuning strong optical field gradients at a local probe microscope tip apex," Appl. Phys. Lett. 70, 705-707 (1997). [CrossRef]
  7. R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, and P. Royer, "Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method," Opt. Commun. 221, 13-22 (2003). [CrossRef]
  8. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006). [CrossRef]
  9. L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  10. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc.-Oxf. 210, 311-314 (2003). [CrossRef]
  11. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004). [CrossRef]
  12. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005). [CrossRef] [PubMed]
  13. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006). [CrossRef] [PubMed]
  14. N. Ocelic and R. Hillenbrand, "Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation," Nat. Mater. 3, 606-609 (2004). [CrossRef] [PubMed]
  15. A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, "Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling," Nano Lett. 6, 774-778 (2006). [CrossRef] [PubMed]
  16. B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). [CrossRef]
  17. J. S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753 - 758 (2006). [CrossRef] [PubMed]
  18. A. Huber et al., "Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy," Adv. Mater. (in press).
  19. J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980). [CrossRef]
  20. A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surface-enhanced Raman-scattering," Phys. Rev. Lett. 48, 957 - 960 (1982). [CrossRef]
  21. P. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983). [CrossRef]
  22. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  23. I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, "Coherent near field optical microscopy," Opt. Commun. 174, 33-41 (2000). [CrossRef]
  24. F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning interferometric apertureless microscopy - optical imaging at 10 angstrom resolution," Science 269, 1083-1085 (1995). [CrossRef] [PubMed]
  25. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). [CrossRef]
  26. Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Phys. Chem. B 109, 8503-8508 (2005). [CrossRef]
  27. R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). [CrossRef]
  28. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  29. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4, 1669-1672 (2004). [CrossRef]
  30. L. Stebounova, B. B. Akhremitchev, and G. C. Walker, "Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy," Rev. Sci. Instrum. 74, 3670-3674 (2003). [CrossRef]
  31. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, (2006). [CrossRef] [PubMed]
  32. J. L. Bohn, D. J. Nesbitt, and A. Gallagher, "Field enhancement in apertureless near-field scanning optical microscopy," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 18, 2998-3006 (2001). [CrossRef]
  33. J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, (2005).
  34. S. V. Sukhov, "Role of multipole moment of the probe in apertureless near-field optical microscopy," Ultramicroscopy 101, 111-122 (2004). [CrossRef]
  35. H. Hatano and S. Kawata, "Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images," J. Microsc.-Oxf. 194, 230 - 234 (1999). [CrossRef]
  36. M. Labardi, S. Patane, and M. Allegrini, "Artifact-free near-field optical imaging by apertureless microscopy," Appl. Phys. Lett. 77, 621-623 (2000). [CrossRef]
  37. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  38. J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys. 89, 5159-5169 (2001). [CrossRef]
  39. A. Wokaun, "Surface enhancement of optical-fields - mechanism and applications,"Mol. Phys. 56, 1 - 33 (1985). [CrossRef]
  40. W. Denk and D. Pohl, "Near-field optics - microscopy with nanometer-size fields," J. Vac. Sci. Technol. B 9, 510-513 (1991). [CrossRef]
  41. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884 (2002). [CrossRef]
  42. N. Ocelic, "Quantitative near-field phonon-polariton spectroscopy," Ph.D. thesis, Technical University Munich (2007).
  43. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys. 89, 5774-5778 (2001). [CrossRef]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons Inc, 1998). [CrossRef]
  45. J. D. Jackson, Classical Electrodynamics (Wiley & Sons, 1998).
  46. I. V. Lindell, G. Dassios, and K. I. Nikoskinen, "Electrostatic image theory for the conducting prolate spheroid," J. Phys. D-Appl. Phys. 34, 2302-2307 (2001). [CrossRef]
  47. D. V. Redzic, "An electrostatic problem - a point-charge outside a prolate dielectric spheroid," Am. J. Phys. 62, 1118 - 1121 (1994). [CrossRef]
  48. J. C. E. Sten and I. V. Lindell, "An electrostatic image solution for the conducting prolate spheroid," J. Electromagn. Waves Appl. 9, 599 - 609 (1995).
  49. D. V. Redzic, "Image of a moving spheroidal conductor," Am. J. Phys. 60, 506-508 (1992). [CrossRef]
  50. Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19,804-19,809 (2006).
  51. J. Aizpurua, personal communication (2005).
  52. N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett. 89, (2006). [CrossRef]
  53. R. Bachelot, G. Wurtz, and P. Royer, "An application of the apertureless scanning near-field optical microscopy: imaging a GaAlAs laser diode in operation," Appl. Phys. Lett. 73, 3333-3335 (1998). [CrossRef]
  54. B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999). [CrossRef]
  55. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, (2005). [CrossRef]
  56. F. Engelbrecht and R. Helbig, "Effect of crystal anisotropy on the infrared reflectivity of 6H-SiC," Phys. Rev. B 48, 15,698 - 15,707 (1993). [CrossRef]
  57. H. Mutschke, A. C. Andersen, D. Clement, T. Henning, and G. Peiter, "Infrared properties of SiC particles," Astron. Astrophys. 345, 187-202 (1999).
  58. M. Hofmann, A. Zywietz, K. Karch, and F. Bechstedt, "Lattice-dynamics of SiC polytypes within the bondcharge model," Phys. Rev. B 50, 13,401-13,411 (1994). [CrossRef]
  59. H. Harima, S. Nakashima, and T. Uemura, "Raman-scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H-SiC and 6H-SiC," J. Appl. Phys. 78, 1996-2005 (1995). [CrossRef]
  60. I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, "Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy," Radio Sci. 31, 1361 - 1368 (1996). [CrossRef]
  61. I. V. Lindell, K. I. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc.-Sci. Meas. Technol. 144, 156 - 162 (1997). [CrossRef]
  62. S. C. Schneider, S. Grafstrom, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, (2005). [CrossRef]
  63. M. A. Ordal et al., "Optical properties of the metals Al, Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti and W in the infrared and far infrared," Appl. Opt. 22, (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited