OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Broadband sum-frequency generation as an efficient two-photon detector for optical tomography

Avi Pe’er, Yaron Bromberg, Barak Dayan, Yaron Silberberg, and Asher A. Friesem  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8760-8769 (2007)
http://dx.doi.org/10.1364/OE.15.008760


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel non-linear detection method for optical tomography that does not rely on detection of interference fringes and is free of optical background. The method exploits temporally coherent broadband illumination such as ultrashort pulses, and a non-linear two-photon detection process such as sum-frequency generation (SFG). At the detection stage, the reference beam and the sample beam are mixed in a thick non-linear crystal, and only the mixing term, which is free of optical background, is detected. Consequently, the noise limitations posed by the background in standard OCT (excess and shot noise), do not exist here. Due to the non-linearity, the signal to noise ratio scales more favorably with the optical power compared to standard OCT, yielding an inherent improvement for high speed tomographic scans. Careful design of phase matching in the crystal enables non-linear mixing which is both highly efficient and broadband, yielding both high sensitivity and high depth resolution.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Imaging Systems

History
Original Manuscript: April 2, 2007
Revised Manuscript: May 24, 2007
Manuscript Accepted: May 29, 2007
Published: June 28, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Avi Pe'er, Yaron Bromberg, Barak Dayan, Yaron Silberberg, and Asher A. Friesem, "Broadband sum-frequency generation as an efficient two-photon detector for optical tomography," Opt. Express 15, 8760-8769 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-14-8760


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Piston, "Imaging living cells and tissues by two-photon excitation microscopy," Trends Cell Biol. 9, 66-69 (1999). [CrossRef] [PubMed]
  2. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997). [CrossRef]
  3. D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002). [CrossRef]
  4. J. Cheng, A. Volkmer, L. D. Book and X. S Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity". J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  5. N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  8. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  9. R. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992). [CrossRef]
  10. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis and A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150-152 (1986). [CrossRef] [PubMed]
  11. C. Yan and J. Diels, "Imaging with femtosecond pulses," Appl. Opt. 31, 6869-6873 (1992). [CrossRef] [PubMed]
  12. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, "Coherent control with broadband squeezed vacuum," quant-ph/0302038.
  13. B. Dayan, A. Pe’er, A. A. Friesem and Y. Silberberg, "Two photon absorption and coherent control with broadband down-converted light," Phys. Rev. Lett. 93, 023005 (2004). [CrossRef] [PubMed]
  14. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  15. M. A. Choma, M. V. Sarunic, C. Y. and J. A. Izatt, " Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express. 11, 2183 (2003). [CrossRef] [PubMed]
  16. A. Yariv, Quantum Electronics (John Wiley and Sons, 1988, 3rd ed.), Chap. 16.
  17. H. Wang, A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," IEEE J. Quantum Electron. 39, 1600-1618 (2003). [CrossRef]
  18. A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt 51, 1433-1445 (2004).
  19. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998). [CrossRef]
  20. Z. Zheng and A. M. Weiner, "Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals," Opt. Lett. 25, 984-986 (2000). [CrossRef]
  21. A. Pe'er, Y. Silberberg, B. Dayan, and A. A. Friesem, "Design of a high-power continuous source of broadband down-converted light," Phys. Rev. A. 74, 053805 (2006). [CrossRef]
  22. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999). [CrossRef]
  23. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002). [CrossRef]
  24. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003). [CrossRef] [PubMed]
  25. C. K. Hong and Z. Y. Ou and and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2047 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited