OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

On the rotational stability of nonspherical particles driven by the radiation torque

Ferdinando Borghese, Paolo Denti, Rosalba Saija, and Maria Antonia Iatì  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8960-8971 (2007)
http://dx.doi.org/10.1364/OE.15.008960


View Full Text Article

Enhanced HTML    Acrobat PDF (2050 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculate the radiation torque exerted by a monochromatic plane wave, either unpolarized or linearly polarized, on aggregates of spheres and investigate the stability of the resulting rotational motion. In fact, neglecting any braking momenta we calculate the component of the electromagnetic torque orthogonal to the principal axis of maximum moment of inertia through the center of mass (transverse torque), as a function of the direction of propagation of the incident field. The aggregates we study are composed of homogeneous spheres, possibly of different materials. The electromagnetic torque is calculated through the transition matrix approach along the lines of the theory reported in our recent paper [F. Borghese, P. Denti, R. Saija and M. A. Iatì, Opt. Express 14, 9508 (2006)]. When the transverse component of the electromagnetic torque is small or vanishes the rotational motion driven by the component along the principal axis of inertia may be nearly stable.

© 2007 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.2160) Physical optics : Energy transfer
(290.0290) Scattering : Scattering

ToC Category:
Physical Optics

History
Original Manuscript: May 7, 2007
Revised Manuscript: June 28, 2007
Manuscript Accepted: June 28, 2007
Published: July 5, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Ferdinando Borghese, Paolo Denti, Rosalba Saija, and Maria Antonia Iati, "On the rotational stability of nonspherical particles driven by the radiation torque," Opt. Express 15, 8960-8971 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-14-8960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, New York, 1975).
  2. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-349 (1998). [CrossRef]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg and H. Rubinsztein-Dunlop, "Erratum: Optical alignment and spinning of laser-trapped microscopic particles," Nature 395, 621 (1998). [CrossRef]
  4. P. Galajda and P. Ormos, "Rotation of microscopic propellers in laser tweezers," J. Opt. B: Quantum Semiclassical Opt. 4, S78-S81 (2002). [CrossRef]
  5. E. M. Purcell, "Suprathermal rotation of interstellar grains," Astrophys. J. 231, 404-416 (1979). [CrossRef]
  6. A. Lazarian, "Physics of grain alignment," in Cosmic evolution and galaxy formation, AIP Conference series 3, (1999).
  7. B. T. Draine and J. C. Weingartner, "Radiative torques on interstellar grains. I. Superthermal spin-up," Astrophys. J. 470, 551-565 (1996). [CrossRef]
  8. B. T. Draine and J. C. Weingartner, "Radiative torques on interstellar grains. II. Grain alignment," Astrophys. J. 480, 633-646 (1997). [CrossRef]
  9. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973). [CrossRef]
  10. B. T. Draine and P. J. Flatau, "Discrete dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  11. P. C. Waterman, "Symmetry, unitarity and geometry in electromagnetic scattering," Phys. Rev. D 4, 825-839 (1971).
  12. P. L. Marston and J. H. Crichton, "Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave," Phys. Rev. A 30, 2508-2516 (1984). [CrossRef]
  13. F. J. García de Abajo, "Electromagnetic forces and torques in nanoparticles irradiated by plane waves," J. Quant. Spectrosc. Radiat. Trasfer 89, 3-9 (2004). [CrossRef]
  14. F. J. García de Abajo, "Momentum transfer to small particles by passing electron beams," Phys. Rev. B 70, 115422 (2004). [CrossRef]
  15. F. Borghese, P. Denti, R. Saija and M. A. Iatì, "Radiation torque on nonspherical particles in the transition matrix formalism," Opt. Express 14, 9508-9521 (2006). [CrossRef] [PubMed]
  16. F. Borghese, P. Denti and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed., (Springer, Berlin, 2007).
  17. R. Saija, M. A. Iatì, P. Denti, F. Borghese, A. Giusto and O. I. Sindoni, "Efficient light-scattering calculations for aggregates of large spheres," Appl. Opt. 42, 2785-2793 (2003). [CrossRef] [PubMed]
  18. R. Saija, M. A. Iatì, F. Borghese, P. Denti, S. Aiello and C. Cecchi-Pestellini, "Beyond Mie Theory: The transition matrix approach in interstellar dust modeling," Astrophys. J. 559, 993-1004 (2001). [CrossRef]
  19. Y.-L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  20. W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press Series on Eletromagnetic Waves (IEEE, Piscataway, N. J., 1990).
  21. F. Borghese, P. Denti, R. Saija and M. A. Iatì, "Radiation torque on nonspherical particles in the transition matrix formalism: erratum," Opt. Express 15, 6946 (2007). [CrossRef] [PubMed]
  22. The Erratum to Ref. [16] can be found at http://dfmtfa.unime.it/profs/borghese/ferdinandoborghese.html.
  23. M. I. Mishchenko, "Radiation force caused by scattering, absorption and emission of light by nonspherical particles," J. Quant. Spectrosc. Radiat. Transf. 70, 811-816 (2001). [CrossRef]
  24. E. M. Rose, Elementary Theory of Angular Momentum, (Wiley, New York, 1956).
  25. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed., (Addison-Wesley, Reading, Mass., 2002).
  26. B. T. Draine and H. M. Lee, "Optical properties of interstellar graphite and silicate grains," Astrophys. J. 285, 89-108 (1984). [CrossRef]
  27. P. H. Berning, G. Hass and P. R. Madden, "Reflectance-increasing coatings for the vacuum ultraviolet and their applications," J. Opt. Soc. Am. 50, 586-597 (1960). [CrossRef]
  28. U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. F: Metal Phys. 4, 999-1014 (1974). [CrossRef]
  29. G. Wurm and M. Schneiter, "Coagulation as a unifying element for interstellar polarization," Astrophys. J. 567, 370-375 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited