OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Dual beam heterodyne Fourier domain optical coherence tomography

Adrian H. Bachmann, Roland Michaely, Theo Lasser, and Rainer A. Leitgeb  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9254-9266 (2007)
http://dx.doi.org/10.1364/OE.15.009254


View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantage of the presented approach is the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion. The method and first experimental results are presented and its properties concerning SNR and dynamic range are discussed.

© 2007 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.1650) Imaging systems : Coherence imaging
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 2, 2007
Revised Manuscript: July 4, 2007
Manuscript Accepted: July 9, 2007
Published: July 12, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Adrian H. Bachmann, Roland Michaely, Theo Lasser, and Rainer A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-15-9254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  6. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol. 138, 412-419 (2004). [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  8. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  9. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 44009 (2005). [CrossRef] [PubMed]
  10. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  11. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). [CrossRef] [PubMed]
  12. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). [CrossRef] [PubMed]
  14. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005). [CrossRef] [PubMed]
  15. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  16. M. V. Sarunic, S. Weinberg, and J. A. Izatt, "Full-field swept-source phase microscopy," Opt. Lett. 31, 1462-1464 (2006). [CrossRef] [PubMed]
  17. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. De Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005). [CrossRef] [PubMed]
  18. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  19. C. Joo, K. H. Kim, and J. F. De Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," Opt. Lett. 32, 623-625 (2007). [CrossRef] [PubMed]
  20. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006). [CrossRef] [PubMed]
  21. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006). [CrossRef] [PubMed]
  22. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, L. F. Schmetterer, I. Strasser, and C. Unfried, "In-vivo dual-beam optical coherence tomography," Proc. SPIE 2083,356-3621994.
  23. C. K. Hitzenberger, "Optical measurement of the axial eye length by Laser Doppler Interferometry," Investigative Ophthalmology and Visual Science 32, 616-624 (1991). [PubMed]
  24. M. Hafez, T. C. Sidler, R. P. Salathe, G. L. M. Jansen, and J. C. Compter, "Design, simulations and experimental investigations of a compact single mirror tip/tilt laser scanner," Mechatronics 10, 741-760 (2000). [CrossRef]
  25. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  26. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3, 45-54 (1998). [CrossRef]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  29. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004). [CrossRef]
  30. A. H. Bachmann, M. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler Imaging and optical vivisection of retinal blood flow " Opt. Express 15, 408-422 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2182 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited