OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Determination of biogeochemical properties of marine particles using above water measurements of the degree of polarization at the Brewster angle.

Malik Chami and David McKee  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9494-9509 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retrieval of biogeochemical parameters from remotely sensed data in optically complex waters such as those found in coastal zones is a challenging task due to the effects of various water constituents (biogenic, nonalgal and inorganic particles, dissolved matter) on the radiation exiting the ocean. Since scattering by molecules, aerosols, hydrosols and reflection at the sea surface introduce and modify the polarization state of light, the polarized upward radiation contains embedded information about the intrinsic nature of aerosols and suspended matter in the ocean. In this study, shipborne above water angularly resolved visible/near infrared multi-band measurements of the degree of polarization are analysed against their corresponding in-situ biogeochemically characterized water samples for the first time. Water samples and radiometric data were collected in the English Channel along an inshore-offshore transect. Angular variations in the degree of polarization P are found to be consistent with theory. Maximum values of P are observed near the Brewster viewing angle in the specular direction. Variations in the degree of polarization at the Brewster angle (PB ) with water content revealed that the suspended particulate matter, which is mainly composed of inorganic particles during the experiment, contributes to depolarise the skylight reflection, thus reducing PB . An empirical polarization-based approach is proposed to determine biogeochemical properties of the particles. The concentration of inorganic particles can be estimated using PB to within ±13% based on the dataset used. Larger sets of polarized measurements are recommended to corroborate the tendency observed in this study.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: June 8, 2007
Revised Manuscript: July 5, 2007
Manuscript Accepted: July 5, 2007
Published: July 17, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Malik Chami and David McKee, "Determination of biogeochemical properties of marine particles using above water measurements of the degree of polarization at the Brewster angle.," Opt. Express 15, 9494-9509 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color algorithms for SeaWiFS," J. Geophys. Res. 103, 937-953 (1988).
  2. J. E. O'Reilly,  et al., "Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4," NASA Tech. Memo. 2000-206892 11, 9-27 (2000).
  3. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. D. 93, 10909-10924 (1988). [CrossRef]
  4. F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors," J. Geophys. Res. 101, 631-648 (1996). [CrossRef]
  5. S. A. Garver and D. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea," J. Geophys. Res. 102, 607-625 (1997). [CrossRef]
  6. M. Chami and D. Robilliard, "Inversion of oceanic constituents in case I and II waters with genetic programming algorithms," Appl. Opt. 41, 6260-6274 (2002). [CrossRef] [PubMed]
  7. Z. P. Lee, K. L. Carder, and R. Arnone, "Deriving inherent optical properties from water color: A multi- band quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 755-772 (2002). [CrossRef]
  8. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 05-14 (2002). [CrossRef]
  9. H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sens. 43, 585-591 (2005). [CrossRef]
  10. C. H. Chang, C. C. Liu. and C. G. Wen, "Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color," Opt. Express 15, 252-264 (2007). [CrossRef] [PubMed]
  11. K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998). [CrossRef]
  12. R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modelling methods," J. Geophys. Res. 99, 7457-7466 (1994). [CrossRef]
  13. C. D. Mobley, "Estimation of the remote sensing reflectance from above surface measurements," Appl. Opt. 38, 7442-7454 (1999). [CrossRef]
  14. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Surface reflection effects on upwelling radiance field measurements in turbid waters," J. Opt. A: Pure Appl. Opt.  6, 690-697 (2004). [CrossRef]
  15. B. Fougnie, R. Frouin, P. Lecomte, and P. Y. Deschamps, "Reduction of skylight reflections effects in the above water measurement of diffuse marine reflectance," Appl. Opt. 38, 3844-3856 (1999). [CrossRef]
  16. M. Chami, and M. Defoin-Platel, "Sensitivity of the retrieval of the inherent optical properties of marine particles in coastal waters to the directional variations and the polarization of the reflectance," J. Geophys. Res. 112, C05037, doi:10.1029/2006JC003758 (2007). [CrossRef]
  17. M. Chami, "Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance," J. Geophys. Res. 112, C05026, doi:10.1029/2006JC003843 (2007). [CrossRef]
  18. H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom., F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and silt," Limnol. Oceanogr. 43, 1180-1197 (1998). [CrossRef]
  19. M. Chami, R. Santer, and E. Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean-atmopshere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001). [CrossRef]
  20. T. H. Waterman, "Polarization patterns in submarine illumination," Science 120, 927-932 (1954). [CrossRef] [PubMed]
  21. T. H. Waterman, "Polarization of scattered sunlight in deep waters," Papers in Marie Biology and Oceanography, Deep Sea Res. 3, 426-434 (1955).
  22. A. Ivanoff and T. H. Waterman, "Factors, mainly depth and wavelength, affecting the degree of underwater light polarization," J. Mar. Res. 16, 283-307 (1958).
  23. G. F. Beardsley, "Mueller scattering matrix of sea water," J. Opt. Soc. Am. 58, 52-57 (1968). [CrossRef]
  24. B. Lundgren, and N.K. Hojerslev, "Daylight measurements in the Sargasso Sea. Results from the "DANA" expedition January-April 1966, Rep. 14, Department of physical oceanography," University of Copenhagen, Copenhagen, Denmark (1971).
  25. K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  26. J. T. Adams, E. Aas, N. K. Hojerslev, and B. Lundgren, "Comparison of radiance and polarization observed in the Mediterranean Sea and simulated in a Monte Carlo model," Appl. Opt. 41, 2724-2729 (2002). [CrossRef] [PubMed]
  27. A. Cunningham, P. Wood and D. McKee, "Brewster-angle measurements of sea-surface reflectance using a high resolution spectroradiometer," J Opt. A. 4, S29-S33 (2002). [CrossRef]
  28. J. Chowdhary, B. Cairns, M. I. Mishenko, and D. L. Travis, "Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter," Geophys. Res. Lett. 28, 243-246 (2001). [CrossRef]
  29. J. Chowdhary, B. Cairns and L. Travis, "Contribution of water leaving radiances to multiangle, multispectral, polarimetric observations over the open ocean: bio-optical model results for case 1 waters," Appl. Opt. 45, 5542-5567 (2006). [CrossRef] [PubMed]
  30. A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, "Retrieval of chlorophyll fluorescence from reflectance spectra through polarization discrimination: modeling and experiments," Appl. Opt. 45, 5568-5581 (2006). [CrossRef] [PubMed]
  31. M. Chami and R. Santer, "Aerosol remote sensing using ground based measurements and POLDER airborne sensor above coastal waters," Remote Sens. Environ. 66, 203-221 (1998). [CrossRef]
  32. Unesco, "Determination of photosynthetic pigments in sea water," Monographs Oceanogr.Method, UNESCO I: pp. 62 (1966)
  33. H. C. Van de Hulst, Light scattering by small particles, (Dover, New York 1981) pp. 470.
  34. G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, "Multiple scattered radiation emerging from Rayleigh and continental haze layer. 1: Radiance, polarization and neutral points," Appl. Opt. 15, 632-647 (1976). [CrossRef] [PubMed]
  35. E. P. Shettle, and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties," Environmental research papers 676, 31 (1979).
  36. J. P. Dupont, D. Bentley and A. Richard, "Suivi du détroit du Pas de Calais," J. Rech. Oceanogr. 6, 1-16 (1981).
  37. D. Bentley, "Caractéristiques physico-chimiques des eaux du Détroit du Pas de Calais," J. Rech. Oceanogr. 10, 69-71 (1985).
  38. J. M. Brylinski, Y. Lagadeuc, and V. Gentilhomme, "Le fleuve côtier: un phénomène hydrologique important en Manche Orientale. Exemple du Pas de Calais," Oceanol. Acta 11, 197-203 (1991).
  39. C. D. Mobley, "A numerical model for the computation of radiance distributions in natural waters with wind roughened surfaces," Limnol. Oceanogr. 34, 1473-1483 (1989). [CrossRef]
  40. Z. Jin and K. Stamnes, "Radiative transfer in nonuniformly refractive layered media such as the atmosphere-ocean system," Appl. Opt. 33, 431-443 (1994). [CrossRef] [PubMed]
  41. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters, III, Implications of bi-directionality for the remote sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  42. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, C13, 31033-31044 (1998). [CrossRef]
  43. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998). [CrossRef]
  44. H. Bader, "The hyperbolic distribution of particles sizes," J. Geophys. Res. 75, 2822-2830 (1970). [CrossRef]
  45. K. L. Carder, G. F. Beardsley, and H. Pak, "Particle size distribution in the Eastern Equatorial Pacific," J. Geophys. Res. 76, 5070-5077 (1971). [CrossRef]
  46. E. Boss and W. S. Pegau, "Relationship of light scattering at an angle in the backward direction to the backscattering coefficient," Appl. Opt. 40, 5503-5507 (2001). [CrossRef]
  47. D. Doxaran, J. M. Froidefond, and P. Castaing, "A reflectance band ratio used to estimate suspended matter concentrations in coastal sediment-dominated waters," Int. J. Remote Sens. 23, 5079-5085 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited