OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Nanoparticle-tuned structural color from polymer opals

Otto L. J. Pursiainen, Jeremy J. Baumberg, Holger Winkler, Benjamin Viel, Peter Spahn, and Tilmann Ruhl  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9553-9561 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The production of high-quality low-defect single-domain flexible polymer opals which possess fundamental photonic bandgaps tuneable across the visible and near-infrared regions is demonstrated in an industrially-scalable process. Incorporating sub-50nm nanoparticles into the interstices of the fcc lattice dramatically changes the perceived color without affecting the lattice quality. Contrary to iridescence based on Bragg diffraction, color generation arises through spectrally-resonant scattering inside the 3D photonic crystal. Viewing angles widen beyond 40° removing the strong dependence of the perceived color on the position of light sources, greatly enhancing the color appearance. This opens up a range of decorative, sensing, security and photonic applications, and suggests an origin for structural colors in Nature.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5470) Materials : Polymers
(290.5850) Scattering : Scattering, particles
(330.1690) Vision, color, and visual optics : Color

ToC Category:

Original Manuscript: May 1, 2007
Revised Manuscript: July 4, 2007
Manuscript Accepted: July 9, 2007
Published: July 17, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Otto L. Pursiainen, Jeremy J. Baumberg, Holger Winkler, Benjamin Viel, Peter Spahn, and Tilmann Ruhl, "Nanoparticle-tuned structural color from polymer opals," Opt. Express 15, 9553-9561 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Iler, "Formation of precious opal," Nature 207, 472-473 (1965). [CrossRef]
  2. P. J. Darragh, A. J. Gaskin, B. C. Terrell, and J. V. Sanders, "Origin of precious opal," Nature 209, 13-16 (1966). [CrossRef]
  3. J. V. Sanders and M. J. Murray, "Ordered arrangements of spheres of two different sizes in opal," Nature 275, 201-203 (1978). [CrossRef]
  4. A. van Blaaderen, "Opals in a new light," Science 282, 887-888 (1998).
  5. D. W. Oxtoby, "Crystallization: Diversity suppresses growth," Nature 413, 694-695 (2001). [CrossRef] [PubMed]
  6. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003). [CrossRef] [PubMed]
  7. H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972). [CrossRef] [PubMed]
  8. A. Jenkins, "Photonics: Wingèd light," Nature 438, 436 (2005). [CrossRef] [PubMed]
  9. P. Vukusic and I. Hooper, "Directionally controlled fluorescence emission in butterflies," Science 18, 1151 (2005). [CrossRef]
  10. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  11. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  12. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998). [CrossRef]
  13. R. de la Rue, "Photonic crystals: Microassembly in 3D," Nature Mater. 2, 74-76 (2003). [CrossRef]
  14. P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999). [CrossRef]
  15. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. -M. Ho, "Inverse face-centered cubic thin film photonic crystals," Adv. Mater. 13, 443-446 (2001). [CrossRef]
  16. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, "Carbon structures with three-dimensional periodicity at optical wavelengths," Science 282, 897-901 (1998). [CrossRef] [PubMed]
  17. J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997). [CrossRef]
  18. A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, G. A. Ozin, J. M. Jethmalani, and W. T. Ford, "Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films," Chem. Mater.  8, 2138-2146 (1996). [CrossRef]
  19. S. H. Foulger, P. Jiang, A. Lattam, D. W. SmithJr., J. Ballato, D. E. Dausch, S. Grego, and B. R. Stoner, "Photonic crystal composites with reversible high-frequency stop band shifts," Adv. Mater. 15, 685-689 (2003). [CrossRef]
  20. T. Ruhl, P. Spahn, and G. P. Hellmann, "Artificial opals prepared by melt compression," Polymer 44, 7625-7634 (2003). [CrossRef]
  21. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, and T. Ruhl, "Compact strain-sensitive flexible photonic crystals for sensors," Appl. Phys. Lett. 87, 101902-101904 (2005). [CrossRef]
  22. G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, "Observation of coherent backscattering of light by cold atoms," J. Opt. B: Quantum Semiclassical Opt. 2, 672-685 (2000). [CrossRef]
  23. Using conventional spectro-photometers thus yields erroneous measurements as some significant fraction of S is also collected.
  24. V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215-165227 (2002). [CrossRef]
  25. T. Ruhl and G. P. Hellmann, "Colloidal crystals in latex films: rubbery opals," Macromol. Chem. Phys. 202, 3502-3505 (2001). [CrossRef]
  26. Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, "Different regimes of light localization in a disordered photonic crystal," Phys. Rev. B 60, 1555-1562 (1999). [CrossRef]
  27. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615-016625 (2005). [CrossRef]
  28. A. F. Koenderink and W. L. Vos, "Optical properties of real photonic crystals: anomalous diffuse transmission," J. Opt. Soc. Am. B 22, 1075-1084 (2005). [CrossRef]
  29. C. Hermann and O. Hess, "Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap," J. Opt. Soc. Am. B 19, 3013-3018 (2002). [CrossRef]
  30. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, "Density of states functions for photonic crystals," Phys. Rev. E 69, 16609-16624 (2004). [CrossRef]
  31. A. V. Baryshev, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, "Light diffraction from opal-based photonic crystals with growth-induced disorder: Experiment and theory," Phys. Rev. E 73, 205118 (2006).
  32. S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, "Diffraction in crystalline colloidal-array photonic crystals," Phys. Rev. B 69, 066619 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited