OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis

David Pietroy, Alexandre V. Tishchenko, Manuel Flury, and Olivier Parriaux  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9831-9842 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The algebraic polar expression of resonant reflection from a grating waveguide excited by a free space wave is formulated in terms of the physically meaningful phenomenological parameters of the coupled wave formalism. The reflection coefficient is simply represented as a circle in the complex plane which sheds light on the behaviour of the modulus and phase of anomalous reflection. Analytical expressions are derived for the phenomenological parameters that can now be calculated from optogeometrical quantities which are simple to measure. The relevance and usefulness of bridging the two formalisms is shown in the example of the design of an evanescent wave biosensor.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(260.5740) Physical optics : Resonance

ToC Category:
Diffraction and Gratings

Original Manuscript: March 8, 2007
Revised Manuscript: May 14, 2007
Manuscript Accepted: May 16, 2007
Published: July 20, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

David Pietroy, Alexandre V. Tishchenko, Manuel Flury, and Olivier Parriaux, "Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis," Opt. Express 15, 9831-9842 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. A. Sychugov, A. V. Tishchenko, and A. A. Khakimov, "Resonant wave conversion in a corrugated dielectric waveguide," Sov. Tech. Phys. Lett. 5, 389-390 (1979).
  2. J. Marcou, N. Gremillet, and G. Tomin, "Polarization conversion by Bragg deflection in isotropic planar integrated optics waveguides. I - Theoretical study. II - Experimental study," Opt. Commun. 32, 63-71 (1980). [CrossRef]
  3. J. Van Roey, and P. E. Lagasse, "Coupled wave analysis of obliquely incident waves in thin films gratings," Appl. Opt. 20, 423-429 (1981). [CrossRef] [PubMed]
  4. L. Mashev, and E. Popov, "Zero order anomaly of dielectric coated gratings," Opt. Commun. 55, 377-380 (1985). [CrossRef]
  5. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, "Total reflection of light from a corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985). [CrossRef]
  6. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989). [CrossRef]
  7. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, "Guided-mode resonance in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990). [CrossRef]
  8. N. M. Lyndin, V. A. Sychugov, A. V. Tishchenko, O. Parriaux, N. Athanassopoulou, P. Edwards, C. Maule, and J. Molloy, "Enhanced visibility grating waveguide biosensor," in Proceedings of 5th European Conference on Optical Chemical Sensors and Biosensors EUROPT®ODE V, Lyon, France, ed. (Elsevier, 2000), p. 63.
  9. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002). [CrossRef]
  10. Y. Fang, A. Ferries, N. Fontaine, J. Mauro, and J. Balakrishnan, "Resonant waveguide biosensor for living cell sensing," Biophys. J. 91, 1925-1940 (2006). [CrossRef] [PubMed]
  11. T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, "Narrowband, polarization-independent free-space wave notch filter," J. Opt. Soc. Am. A 22, 2799-2803 (2005). [CrossRef]
  12. J.-F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, "A polarization-stabilized microchip laser using a resonant mirror," Appl. Phys. B 85, 519-524 (2006). [CrossRef]
  13. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, "Narrow band resonant grating of 100% reflection under normal incidence," Opt. Express 14, 12613-12622 (2006). [CrossRef] [PubMed]
  14. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, "Light modulation with electro-optic polymer-based resonant grating waveguide structures," Opt. Express 13, 4645-4650 (2005). [CrossRef] [PubMed]
  15. N. Destouches, A. Tishchenko, J. Pommier, S. Reynaud, O. Parriaux, S. Tonchev, and M. Ahmed, "99% efficiency measured in the -1st order of a resonant grating," Opt. Express 13, 3230-3235 (2005). [CrossRef] [PubMed]
  16. I. A. Avrutsky, Y. Zhao, and V. Kochrgin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated metal film," Opt. Lett. 25, 595-597 (2000). [CrossRef]
  17. Y. Jourlin, E. Gamet, S. Tonchev, A. V. Tishchenko, and O. Parriaux, A. Last, "Low loss polarizing beam splitter using the long range plasmon mode along a continuous metal film," Proc. SPIE 6187, 61870 H (2006). [CrossRef]
  18. V. A. Sychugov and A. V. Tishchenko, "Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam," Photonics Optoelectron. 1, 79-89 (1993).
  19. E. Popov, L. Mashev, and D. Maystre, "Theoretical study of anomalies of coated dielectric gratings," Opt. Acta 33, 607-619 (1986). [CrossRef]
  20. A. V. Tishchenko, M. Hamdoun, and O. Parriaux, "Two-dimensional coupled mode equation for grating waveguide excitation by a focused beam," Opt. Quantum Electron. 35, 475-491(2003). [CrossRef]
  21. M. D. Salik and P. Chavel, "Resonant excitation analysis of waveguide grating couplers," Opt. Commun. 193, 127-131 (2001). [CrossRef]
  22. M. Neviere, D. Maystre, and P. Vincent, "Application du calcul des modes de propagation a l'étude théorique des anomalies des réseaux recouverts de diélectriques," J. Opt. 8, 231-242 (1977). [CrossRef]
  23. M. Nevière, "The homogeneous problem," in Electromagnetic Theory of Gratings, R. Petit, ed., (Springer Verlag Berlin, 1980), pp. 123-157. [CrossRef]
  24. N. M. Lyndin, O. Parriaux, and V. A. Sychugov, "Waveguide excitation by a Gaussian beam and a finite size grating," Sens. Actuators B 41, 23-29 (1997). [CrossRef]
  25. A. Sychugov et al., "Corrugated waveguide structures in integrated and fibre optics," in Proceedings of the General Physics Institute of the Academy of Sciences of the USSR34, 1991 (in Russian).
  26. D. Pietroy, A. V. Tishchenko, M. Flury, R. Stoian, and O. Parriaux, "Waveguide grating spectral phase-shifter for temporal femtosecond pulse splitting," in Proceedings of the 13th European Conference on Integrated Optics, 25-27 April 2007, Copenhagen, Denmark.
  27. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors," J. Opt. Soc. Am. B 6, 209-220 (1989). [CrossRef]
  28. C. Fattinger, H. Koller, D. Schlatter, and P. Wehrli, "The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration," Biosens. Bioelectron. 8, 99-107 (1993). [CrossRef]
  29. O. Parriaux and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors," J. Lightwave Technol. 16, 573-582 (1998). [CrossRef]
  30. M. S. Klimov, V. A. Sychugov, A. V. Tishchenko, and O. Parriaux, "Optimization of optical waveguide grating couplers," Fiber Integ. Opt. 11, 85-90 (1992). [CrossRef]
  31. A. V. Tishchenko and N. Lyndin, "The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !)," Workshop on Grating Theory, Clermont-Ferrand, France, June 2004.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited