OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Image reconstruction in quantitative X-ray phase-contrast imaging employing multiple measurements

Cheng-Ying Chou, Yin Huang, Daxin Shi, and Mark A. Anastasio  »View Author Affiliations


Optics Express, Vol. 15, Issue 16, pp. 10002-10025 (2007)
http://dx.doi.org/10.1364/OE.15.010002


View Full Text Article

Enhanced HTML    Acrobat PDF (7916 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

X-ray phase-contrast imaging is a technique that aims to reconstruct the projected absorption and refractive index distributions of an object. One common feature of reconstruction formulas for phase-contrast imaging is the presence of isolated Fourier domain singularities, which can greatly amplify the noise levels in the estimated Fourier domain and lead to noisy and/or distorted images in spatial domain. In this article, we develop a statistically optimal reconstruction method that employs multiple (>2) measurement states to mitigate the noise amplification effects due to singularities in the reconstruction formula. Computer-simulation studies are carried out to quantitatively and systematically investigate the developed method, within the context of propagation-based X-ray phase-contrast imaging. The reconstructed images are shown to possess dramatically reduced noise levels and greatly enhanced imaging contrast.

© 2007 Optical Society of America

OCIS Codes
(000.0000) General : General
(100.5070) Image processing : Phase retrieval
(110.7440) Imaging systems : X-ray imaging
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: February 5, 2007
Revised Manuscript: May 7, 2007
Manuscript Accepted: May 20, 2007
Published: July 25, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Cheng-Ying Chou, Yin Huang, Daxin Shi, and Mark A. Anastasio, "Image reconstruction in quantitative X-ray phase-contrast imaging employing multiple measurements," Opt. Express 15, 10002-10025 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-16-10002


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Krol, A. Ikhlef, J.-C. Kieffer, D. Bassano, C. C. Chamberlain, Z. Jiang, H. Pepin, and S. C. Prasad, "Laserbased microfocused X-ray source for mammography: feasibility study," Med. Phys. 24, 725-732 (1997). [CrossRef] [PubMed]
  2. R. Waynant, "Toward practical coherent x-ray sources: Potential medical applications," IEEE J. Quantum Electron. 6, 1465-1469 (2000). [CrossRef]
  3. H. Yamada, "Novel x-ray source based on a tabletop synchrotron and its unique features," Nucl. Instrum.Methods Phys. Res. B 199, 509-516 (2003).
  4. R. Lewis, "Medical phase contrast x-ray imaging: current status and future prospects," Phys. Med. Biol. 49, 3573-3583 (2004). [CrossRef] [PubMed]
  5. W. Thomlinson, P. Suortti, and D. Chapman, "Recent advances in synchrotron radiation medical research," Nucl. Instrum. Methods Phys. Res. A 543, 288-296 (2005).
  6. T. Davis, D. Gao, T. E. Gureyev, A. Stevenson, and S. Wilkins, "Phase-contrast imaging of weakly absorbing materials using hard X-rays," Nature (London) 373, 335-338 (1996).
  7. K. A. Nugent, T. E. Gureyev, D. Cookson, D. Paganin, and Z. Barnea, "Quantitative phase imaging using hard x-rays," Phys. Rev. Lett. 77, 2961-2964 (1996). [CrossRef] [PubMed]
  8. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, "Diffraction enhanced x-ray imaging," Phys. Med. Biol. 42, 2015-2025 (1997). [CrossRef] [PubMed]
  9. C. J. Kotre and I. P. Birch, "Phase contrast enhancement of x-ray mammography: a design study," Phys. Med. Biol. 44, 2853-2866 (1999). [CrossRef] [PubMed]
  10. X. Wu and H. Liu, "Clinical implementation of X-ray phase-contrast imaging: Theoretical foundations and design considerations," Med. Phys. 30, 2169-2179 (2003). [CrossRef] [PubMed]
  11. M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, "Multiple-image radiography," Phys. Med. Biol. 48, 3875-3895 (2003). [CrossRef]
  12. E. F. Donnelly, R. R. Price, and D. R. Pickens, "Characterization of the phase-contrast radiography edgeenhancement effect in a cabinet x-ray system," Med. Phys. 30, 2292-2296 (2003). [CrossRef] [PubMed]
  13. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, "Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources," Nature Phys. 2, 258-261 (2006). [CrossRef]
  14. B.L. Henke, E.M. Gullikson, and J.C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," At. Data Nucl. Data Tables 54, 181-342 (1993). [CrossRef]
  15. F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. D. Palma, M. D. Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, "Low-dose phase contrast x-ray medical imaging," Phys. Med. Biol. 43, 2845-2852 (1998). [CrossRef] [PubMed]
  16. F. Arfelli, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. D. Palma,M. D. Michiel,M. Fabrizioli, R. Longo, R. H. Menk, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, M. Ratti, L. Rigon, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, "Mammography with Synchrotron Radiation: Phase-Detection Techniques," Radiology 215, 286-293 (2000).
  17. M. Z. Kiss, D. E. Sayers, Z. Zhong, C. Parham, and E. D. Pisano, "Improved image contrast of calcifications in breast tissue specimens using diffraction enhanced imaging," Phys. Med. Biol. 49, 3427-3439 (2004). [CrossRef] [PubMed]
  18. E. Pisano, R. Johnston, D. Chapman, J. Geradts, M. Iacocca, C. Livasy, D. Washburn, D. Sayers, Z. Zhong, M. Kiss, and W. Thomlinson, "Human Breast Cancer Specimens: Diffraction-enhanced Imaging with Histologic Correlation-Improved Conspicuity of Lesion Detail Compared with Digital Radiography," Radiology 214, 895- 901 (2000). [PubMed]
  19. T. Tanaka, C. Honda, S. Matsuo, K. Noma, H. Ohara, N. Nitta, S. Ota, K. Tsuchiya, Y. Sakashita, A. Yamada, M. Yamasaki, A. Furukawa, M. Takahashi, and K. Murata, "The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube," Invest. Radiol. 40, 385-396 (2005). [CrossRef] [PubMed]
  20. C. Muehleman, J. Li, Z. Zhong, J. G. Brankov, and M. N. Wernick, "Multiple-image radiography for soft tissue of the foot and ankle," J. Anat. 208, 115-124 (2006). [CrossRef] [PubMed]
  21. J. G. Brankov, M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio, "A computed tomography implementation of multiple-image radiography," Med. Phys. 33, 278-289 (2006). [CrossRef] [PubMed]
  22. A. Bravin, "Exploiting the x-ray refraction contrast with an analyser: the state of the art," J. Phys. D 36, A24-A29 (2003).
  23. P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, "In-line holography and phase-contrast microtomography with high energy x-rays," Phys. Med. Biol. 44, 741-749 (1999). [CrossRef] [PubMed]
  24. P. Cloetens, "Contribution to Phase Contrast Imaging, Reconstruction and Tomography with Hard Synchrotron Radiation: Principles, Implementation and Applications," Ph.D. thesis, Vrije Universiteit Brussel (1999).
  25. A. Pogany, D. Gao, and S. W. Wilkins, "Contrast and resolution in imaging with a microfocus x-ray source," Rev. Sci. Instrum. 68, 2774-2782 (1997). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  27. D. M. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, "Quantitative phase retrieval using coherent imaging systems with linear transfer functions," Opt. Commun. 234, 87-105 (2004). [CrossRef]
  28. P. Cloetens, W. Ludwig, J. Baruchel, D. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, "Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays," Appl. Phys. lett. 75, 2912-2914 (1999). [CrossRef]
  29. A. V. Bronnikov, "Theory of quantitative phase-contrast computed tomography," J. Opt. Soc. Am. A 19, 472-480 (2002). [CrossRef]
  30. T. E. Gureyev, D. M. Paganin, G. R. Myers, Y. I. Nesterest, and S. W. Wilkins, "Phase-and-amplitude computer tomography," Appl. Phys. Lett. 89, 034102 (2006). [CrossRef]
  31. M. A. Anastasio, D. Shi, F. D. Carlo, and X. Pan, "Analytic image reconstruction in local phase-contrast tomography," Phys. Med. Biol. 49, 121-144 (2004). [CrossRef] [PubMed]
  32. Y. I. Nesterets, T. E. Gureyev, D. Paganin, K. M. Pavlov, and S. W. Wilkins, "Quantitative diffraction-enhanced x-ray imaging of weak objects," J. Phys. D 37, 1262-1274 (2004).
  33. Y. I. Nesterets, T. E. Gureyev, K. M. Pavlov, D. M. Paganin, and S. W. Wilkins, "Combined analyser-based and propagation-based phase-contrast imaging of weak objects," Opt. Commun. 259, 19-31 (2006). [CrossRef]
  34. T. E. Gureyev, A. Pogany, D.M. Paganin, and S.W. Wilkins, "Linear algorithms for phase retrieval in the Fresnel region," Opt. Commun. 231, 53-70 (2004). [CrossRef]
  35. D. Paganin, A. Barty, P. J. Mcmahon, and K. A. Nugent, "Quantitative phase-amplitude microscopy III. The effects of noise," J. Microsc. 214, 51-61 (2003). [CrossRef]
  36. Y. Huang and M. A. Anastasio, "Statistically principled use of in-line measurements in intensity diffraction tomography," J. Opt. Soc. Am. A 24, 626-642 (2007). [CrossRef]
  37. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006). [CrossRef]
  38. T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, "Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination," Opt. Commun. 259, 569-580 (2006). [CrossRef]
  39. Y. I. Nesterets, T. E. Gureyev, and S.W. Wilkins, "Polychromaticity in the combined propagation-based/analyserbased phase-contrast imaging," J. Phys. D 38, 4259-4271 (2005).
  40. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. Nesterets, M. J. Morgan, and R. A. Lewis, "Linear systems with slowly varying transfer functions and their application to X-ray phase-contrast imaging," J. Phys. D 37, 2746- 2750 (2004).
  41. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2004).
  42. J.-P. Guigay, "Fourier transform analysis of Fresnel diffraction patterns and in-line holograms," Optik 49, 121- 125 (1977).
  43. T. E. Gureyev, G. R. Myers, Y. I. Nesterets, D. Paganin, K. M. Pavlov, and S. W. Wilkins, "Stability and locality of amplitude and phase contrast tomographies," Proc. SPIE 6318, 63180V (2006).
  44. S. Lowenthal and H. Arsenault, "Image formation for coherent diffuse objects: Statistical properties," J. Opt. Soc. Am. 60, 1478-1483 (1970). [CrossRef]
  45. W. D. Stanley, G. R. Dougherty, and R. Dougherty, Digital Signal Processing (Reston Publishing Company, Inc., 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited