OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique

Kyongsik Choi, James W. M. Chon, Min Gu, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10767-10781 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger’s perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nano-photonics area.

© 2007 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:

Original Manuscript: May 22, 2007
Revised Manuscript: July 26, 2007
Manuscript Accepted: August 8, 2007
Published: August 10, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Kyongsik Choi, James W. Chon, Min Gu, and Byoungho Lee, "Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique," Opt. Express 15, 10767-10781 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications, (Wiley-VCH Verlag, Weinheim, 2006). [CrossRef]
  2. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical data storage memory," Science 245, 843-845 (1989). [CrossRef] [PubMed]
  3. S. Kawata, H. -B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  4. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. -Y. S. Lee, S. M. Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51 (1999). [CrossRef]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. -H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  6. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. -I. Hayashi, and K. Itoh, "Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses," Opt. Lett. 25, 1669-1671 (2000). [CrossRef]
  7. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001). [CrossRef]
  8. D. Day and M. Gu, "Formation of voids in a doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002). [CrossRef]
  9. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara. "Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser," Appl. Phys. A 69S359-S (1999).
  10. Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005). [CrossRef] [PubMed]
  11. A. Vogel, J. Noack, G. Huttmann, and G. Paultauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
  12. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopy (World Scientific, Singapore, 1996). [CrossRef]
  13. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic Press, San Diego, 1996).
  14. Olympus Fluoview Resource Center, http://www.olympusfluoview.com/>.
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, 2000).
  16. R. X. Bian, R. C. Dunn, and X. S. Xie, "Single molecule emission characteristics in near-field microscopy," Phys. Rev. Lett. 75, 4772-4775 (1995). [CrossRef] [PubMed]
  17. T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246, 561-567 (2005). [CrossRef]
  18. J. M. López-Alonso, J. M. Rico-García, and J. Alda, "Photonic crystal characterization by FDTD and principal component analysis," Opt. Express 12, 2176-2186 (2004). [CrossRef] [PubMed]
  19. S. Chang and A. Taflove, "Finite-difference time-domain model of lasing action in a four-level two-electron atomic system," Opt. Express 12, 3827-3833 (2004). [CrossRef] [PubMed]
  20. R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005). [CrossRef] [PubMed]
  21. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38, 3651-3661 (1999). [CrossRef]
  22. J. B. Judkins, R. W. Ziolkowski, and C. W. Haggans, "Two-dimensional finite-difference time-domain simulation for rewritable optical disk surface structure design," Appl. Opt. 35, 2477-2487 (1996). [CrossRef] [PubMed]
  23. D. W. Prather and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A 16, 1131-1142 (1999). [CrossRef]
  24. O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett. 74, 526-529 (1995). [CrossRef] [PubMed]
  25. C. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics, (Artech House, Boston, 1990).
  26. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999).
  29. S. Mellin and G. Nordin, "Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design," Opt. Express 8, 705-722 (2001). [CrossRef] [PubMed]
  30. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, "Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation," Phys. Rev. B 73, 214101 (2006).
  31. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006). [CrossRef] [PubMed]
  32. M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003). [CrossRef] [PubMed]
  33. <jrn>. M. Straub, M. Ventura, and M. Gu, "Microvoid channel polymer photonic crystals with large infrared stop gaps and a multitude of higher-order bandgaps fabricated by femtosecond laser drilling in solid resin," Thin Solid Films 453 -454, 522-526 (2004).</jrn> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1628 KB)     
» Media 2: AVI (946 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited