OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Widely tunable guided-mode resonance nanoelectromechanical RGB pixels

Robert Magnusson and Mehrdad Shokooh-Saremi  »View Author Affiliations


Optics Express, Vol. 15, Issue 17, pp. 10903-10910 (2007)
http://dx.doi.org/10.1364/OE.15.010903


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Widely tunable display pixels are reported. The pixel consists of a subwavelength silicon-nitride/air membrane containing complementary fixed and mobile gratings. By altering the device refractive index profile and symmetry, using MEMS actuation methods, wavelength tuning across ~100 nm per pixel in the visible spectral region is shown to be possible. Initial results illustrating the influence of structural symmetry, pixel thickness, and polarization on the spectral response are provided. These pixels exhibit ~±4° angular acceptance aperture. Applications in compact display systems are envisioned.

© 2007 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(130.2790) Integrated optics : Guided waves

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 24, 2007
Revised Manuscript: July 26, 2007
Manuscript Accepted: July 30, 2007
Published: August 15, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Robert Magnusson and Mehrdad Shokooh-Saremi, "Widely tunable guided-mode resonance nanoelectromechanical RGB pixels," Opt. Express 15, 10903-10910 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-17-10903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC press, 2002).
  2. Texas Instruments, DLP site: http://www.dlp.com/
  3. D. M. Bloom, "The grating light valve: revolutionizing display technology," Proc. SPIE 3013, 165-171 (1997). [CrossRef]
  4. J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," Proc. SPIE 5348, 1-13 (2004). [CrossRef]
  5. Qualcomm, IMOD displays site: http://www.qualcomm.com/technology/imod
  6. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  7. R. Magnusson and S. S. Wang, "Optical guided-mode resonance filter," US patent number 5,216,680, June 1, 1993.
  8. R. Magnusson and Y. Ding, "MEMS tunable resonant leaky mode filters," IEEE Photon. Technol. Lett. 18, 1479-1481 (2006). [CrossRef]
  9. W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs," Appl. Phys. Lett 82, 1999-2001 (2003). [CrossRef]
  10. D. W. Carr, J. P. Sullivan, and T. A. Friedman, "Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave theory," Opt. Lett. 28, 1636-1638 (2003). [CrossRef] [PubMed]
  11. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedman, and J. R. Wendt, "Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer," Opt. Lett. 29, 1182-1184 (2004). [CrossRef] [PubMed]
  12. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007). [CrossRef]
  13. Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007). [CrossRef] [PubMed]
  14. R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. 21, 144-150 (1985). [CrossRef]
  15. P. Vincent and M. Nevière, "Corrugated dielectric waveguides: a numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979). [CrossRef]
  16. Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to fashion diverse optical spectra," Opt. Express 12, 1885-1891 (2004). [CrossRef] [PubMed]
  17. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004). [CrossRef] [PubMed]
  18. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  19. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited