OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Magnetically actuated MEMS microlens scanner for in vivo medical imaging†

Chin-Pang-Billy Siu, Haishan Zeng, and Mu Chiao  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11154-11166 (2007)
http://dx.doi.org/10.1364/OE.15.011154


View Full Text Article

Enhanced HTML    Acrobat PDF (2817 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A magnetically actuated MEMS scanner with a microfabricated ferromagnetic nickel platform and thermosetting polydimethylsiloxane (PDMS) microlens is demonstrated. The device is driven by an external AC magnetic field, eliminating chip circuitry and thermal deformation from joule heating. The resonant frequency of 215.2 Hz and scanning angle of 23° of the scanner have been demonstrated. Experimental studies and optical modeling have shown that this microlens scanner achieves a scanning range of 125 µm when actuated by an external magnetic field of 22.2×10-3 Tesla flux density. The device has potential applications in in vivo medical imaging for minimally invasive diagnoses.

© 2007 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5800) Instrumentation, measurement, and metrology : Scanners
(220.3630) Optical design and fabrication : Lenses
(230.3810) Optical devices : Magneto-optic systems
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 14, 2007
Revised Manuscript: August 7, 2007
Manuscript Accepted: August 8, 2007
Published: August 21, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Chin Pang Billy Siu, Haishan Zeng, and Mu Chiao, "Magnetically actuated MEMS microlens scanner for in vivo medical imaging," Opt. Express 15, 11154-11166 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-18-11154


Sort:  Year  |  Journal  |  Reset  

References

  1. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, 2003). [CrossRef]
  2. H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis and Photodynamic Therapy 1, 111-122 (2004). [CrossRef]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995). [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  6. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, "Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin," Biophys. J. 85, 572-580 (2003). [CrossRef] [PubMed]
  7. P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, "Micromachined silicon nitride deformable mirrors for focus control," Opt. Lett. 26, 1280-1282 (2001). [CrossRef]
  8. Y. Shao, D. L. Dickensheets, and P. Himmer, "3-D MOEMS Mirror for Laser Beam Pointing and Focus Control," IEEE J. Sel. Top. Quantum Electron. 10, 528-535 (2004). [CrossRef]
  9. H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto. "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," J. Microelectromech. Syst. 12, 243-251 (2003). [CrossRef]
  10. H. Miyajima, K. Murakami, and M. Katashiro. "MEMS Optical Scanners for Microscopes," IEEE J. Sel. Top. Quantum Electron. 10, 514-527 (2004). [CrossRef]
  11. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, D. L. Dickensheets, I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004). [CrossRef]
  12. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006) [CrossRef] [PubMed]
  13. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, "Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging," Opt. Express 14, 8604-8612 (2006). [CrossRef] [PubMed]
  14. A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, M. C. Wu, "Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging," Opt. Express 15, 2445-2453 (2007). [CrossRef] [PubMed]
  15. K. Takahashi, H. N. Kwon, K. Saruta, M. Mita, H. Fujita and H. Toshiyoshi, "A two-dimensional f-θ micro optical lens scanner with electrostatic comb-drive XY-stage," IEICE Electron. Express 2, 542-547 (2005). [CrossRef]
  16. S. Kwon and L. P. Lee, "Stacked two dimensional micro-lens scanner of micro confocal imaging array," in Proceeding of IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, USA, 2002), pp. 483-486.
  17. S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004). [CrossRef] [PubMed]
  18. "Metal MUMPS" (MEMSCAP), http://www.memsrus.com/nc-mumps.metal.html
  19. H. J. Moller, Semiconductors for Solar Cells (Artech House, 1993).
  20. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, "The autofluorescence of plastic materials and chips measured under laser irradiation," Lab Chip 5, 1348-1354 (2005). [CrossRef] [PubMed]
  21. R. E. Fisher and B. Tadic-Galeb, Optical System Design (SPIE Press, McGraw-Hill, 2000).
  22. K. H. Jeong and L. P. Lee, "A new method of increasing numerical aperture of microlens for biophotonic MEMS," in Proceeding of IEEE Conference on Microtechnologies in Medicine & Biology (Institute of Electrical and Electronics Engineers, USA, 2002), pp.380-383.
  23. C. R. King, L. Y. Lin and M. C. Wu, "Out-of-Plane refractive microlens fabricated by surface micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996). [CrossRef]
  24. S. H. Ahn and Y. K. Kim, "Proposal of human eye’s crystalline lens-like variable focusing lens," in Proceeding of IEEE/LEOS Summer Topical Meetings in Broadband Optical Networks and Technology (Institute of Electrical and Electronics Engineers, USA, 1998), pp. 89-90.
  25. J. Chen, W. Wang, J. Fang and K. Varahramyan, "Variable -focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004). [CrossRef]
  26. W. Wang and J. Fang, "Design, fabrication and testing of a micromachined integrated tunable microlens," J. Micromech. Microeng. 16, 1221-1226 (2006). [CrossRef]
  27. C. Y. Chang and S. Y. Yang, "Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer," Opt. Express 14, 6253-6258 (2006). [CrossRef] [PubMed]
  28. J. Burck, J. Mayer and H. J. Ache, "Determination of hydrocarbons by near-infrared evanescent wave sensing with a planar waveguide structure," in Proceedings of The 8th Int. Conf. on Solid-State Sensors and Actuators and Eurosensors IX (Transducers'95, Stockholm, Sweden, 1995), pp.779-782.
  29. B. Tatian, "Fitting refractive-index data with the Sellmeier dispersion formula," Appl. Opt. 23, 4477-4485 (1984). [CrossRef] [PubMed]
  30. D. Poelman and P. F. Smet, "Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review," J. Phys. D: Appl. Phys. 36, 1850-1857 (2003). [CrossRef]
  31. S. Shaheen, J. Boissevain, W. Collier, B. V. Jacak, J. S. Lock, P. Roybal, J. Simon-Gillo, W. Sondheim, J. P. Sullivan, and H. Ziock, "Characterization and quality control of silicon microstrip detectors with an infrared diode laser system," Nucl. Instrum. Methods Phys. Res. A, Accelerators, Spectrometers, Dectors and Associated Equipment 352, 573-578 (1995) [CrossRef]
  32. Sony CCE specification, "ICX204AL," http://products.sel.sony.com/semi/PDF/ICX204AL.pdf>
  33. EPA (U.S. Environmental Protection Agency), EMF in your environments: Magnetic field measurement s of everyday electrical devices. EPA/402/R-92/008. (Office of Radiation and Indoor Air, U. S. Environmental Protection Agency, Washington, D.C., 1992). [PubMed]
  34. G. L. Barkley, J. E. Morna, Y. Takanashi, and N. Tepley, "Techniques for DC magnetoencephalography," J. Clin. Neurophysiol. 8, 189-99 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1707 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited