OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Noise pre-filtering techniques in fluorescence-enhanced optical tomography

B. Zhu, M. J. Eppstein, E. M. Sevick-Muraca, and A. Godavarty  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11285-11300 (2007)
http://dx.doi.org/10.1364/OE.15.011285


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this contribution, different measurement noise pre-filtering techniques were developed using frequency-domain fluorescence measurements of homogeneous breast phantoms. We demonstrated that implementing noise pre-filtering, based on modulation depth and measurement error in amplitude, can improve model match between experimental and simulated data under varying experimental conditions (target depths, 1–3 cm and fluorescence optical contrast, 1:0 and 100:1). Noise pre-filtering also improves the qualitative estimation of target(s) location in reconstructed images in deep target(s) when there was fluorescence in the background. Interestingly, decreases in model mismatch did not necessarily correlate with increases in reconstructed target accuracy. In addition, it was observed that pre-filtering measurement noise using different criteria can help differentiate target(s) from artifacts, thus possibly minimizing the false-positive cases in a clinical environment.

© 2007 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.4280) Imaging systems : Noise in imaging systems
(260.2510) Physical optics : Fluorescence

ToC Category:
Image Processing

History
Original Manuscript: April 9, 2007
Revised Manuscript: May 23, 2007
Manuscript Accepted: July 9, 2007
Published: August 22, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
B. Zhu, M. J. Eppstein, E. M. Sevick-Muraca, and A. Godavarty, "Noise pre-filtering techniques in fluorescence-enhanced optical tomography," Opt. Express 15, 11285-11300 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-18-11285


Sort:  Year  |  Journal  |  Reset  

References

  1. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: Initial clinical results," Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  2. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998). [CrossRef]
  3. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, "Contrast features of breast cancer in frequency-domain laser scanning mammography," J. Biomed. Opt. 3, 129-136 (1998). [CrossRef]
  4. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  5. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, "Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection," IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999). [CrossRef]
  6. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  7. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001). [CrossRef]
  8. A. Li, G. Boverman, Y. Zhang, D. Brooks, E.L. Miller, M.E. Kilmer, Q. Zhang, E.M. Hillman, and D.A. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005). [CrossRef] [PubMed]
  9. Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, and D.A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 24033(2005). [CrossRef]
  10. A.P. Gibson, J.C. Hebden, and S.R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005). [CrossRef] [PubMed]
  11. V. Ntziachristos, C.-H. Tung, C. Bremer, and Weissleder , "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  12. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  13. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005). [CrossRef] [PubMed]
  14. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]
  15. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  16. A. Godavarty, C. Zhang, M. J. Eppstein, E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries," Med. Phys. 31, 183-190 (2004). [CrossRef] [PubMed]
  17. A. Godavarty, E. M. Sevick-Muraca, M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005). [CrossRef] [PubMed]
  18. Y. Chen, X. Intes, B. Chance, "Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection," Biomed. Instrum. Technol.,  39, 75-85 (2005). [PubMed]
  19. Z. Sun, Y. Huang, E. M. Sevick-Muraca, "Precise analysis of frequency domain migration measurement forcharacterization of concentrated colloidal suspensions, Sci. Instrum. 73, 383-393(2002) [CrossRef]
  20. O. C. Zeinkiewicz, and R. L. Taylor. The Finite Element Methods In Engineering Science (McGraw-Hill, New York, 1989).
  21. J. N. Reddy. An Introduction to the Finite Element Method 2ed. (McGraw-Hill, New York, 1993).
  22. M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, "Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements", Appl. Opt.,  38:2138-2150 (1999). [CrossRef]
  23. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,‘‘Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets,’’Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited