OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method

Takashi Yamaguchi and Takashi Hinata  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11481-11491 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1221 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell’s equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:
Optics at Surfaces

Original Manuscript: June 26, 2007
Revised Manuscript: August 17, 2007
Manuscript Accepted: August 18, 2007
Published: August 24, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Takashi Yamaguchi and Takashi Hinata, "Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method," Opt. Express 15, 11481-11491 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M Ohtsu and K. Kobayashi, Optical Near Field (Springer-Verlag, Berlin, 2004).
  2. M. Ohtsu, ed., Progress in Nano-Electro-Optics III-Industrial Applications and Dynamics of the Nano-Optical System (Springer, 2004). [PubMed]
  3. T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, "Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording," J. Appl. Phys. 95, 3901-3906 (2004). [CrossRef]
  4. T. Matsumoto, "Near-Field Optical-Head Technology for High-Density, Near-Field Optical Recording," in Progress in Nano-Electro-Optics III, M. Ohtsu, ed., (Springer, 2004).
  5. T. Uno, Finite Difference Time Domain Method for Electromagnetic Field and Antennas, in Japanese (Corona Publishing Co., Ltd, 1998).
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, 2005).
  7. W. A. Challener, I. K. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  8. R. J. Zhu, J. Wang, and G. F. Jin, "Mie scattering calculation by FDTD employing a modified Debye model for Gold material," Optik 116, 419-422 (2005). [CrossRef]
  9. H. Tamaru and K. Miyano, "Localized Surface Plasmon Resonances of Metal Nanoparticles: Numerical Simulations and Their Experimental Verification," Kogaku Japanese Journal of Optics 33, 165-170 (2004).
  10. A. D. Rakiæ, A. B. Djurišiæ, J. M. Elazar, and M. L. Majewski, "Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  11. T. Kashiwa and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization," Microwave Optics Tech. Lett. 3, 203-205 (1990). [CrossRef]
  12. T. Yamaguchi, T. Yamasaki, and T. Hinata, "FDTD Analysis of Optical Near-field Around a Metallic Sphere," in The Papers of Technical Meeting on Electromagnetic Theory (IEE, Japan, 2006), pp. 143-148.
  13. J. A. Roden and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Optical Tech. Lett. 27, 334-339 (2000). [CrossRef]
  14. J. De Moerloose and M. A. Stuchly, "Behavior of Berenger’s ABC for evanescent waves," IEEE Microwave Guided Wave Lett. 5, 344-346 (1995). [CrossRef]
  15. J. P. Bérenger, "Improved PML for the FDTD Solution of Wave-Structure Interaction Problems," IEEE Trans. Antennas Propag. 45, 466-473 (1997). [CrossRef]
  16. J. P. Bérenger, "Evanescent Waves in PML’s: Origin of the Numerical Reflection in Wave-Structure Interaction Problems," IEEE Trans. Antennas Propag. 47, 1497-1503 (1999). [CrossRef]
  17. T. Yamaguchi, "Numerical Analysis of Pulse Reflection from Anisotropic Dielectric Layer," Special Issue of Nihon Univ. CST 2006 Annual Conf. Short Note 1, 113-116 (2007).
  18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  19. T. Hosono, The Foundation of Electromagnetic Wave Theory, in Japanese (Shoko-do, 1973).
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander. Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  21. J. B. Judkins and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974-1983 (1995). [CrossRef]
  22. P. B. Johnson and R.W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  23. M. Bordovsky, P. Catrysse, S. Dods, M. Freitas, J. Klein, L. Kotacka, V. Tzolov, I. Uzunov, and J. Zhang, "Waveguide design, modeling, and optimization - from photonic nano-devices to integrated photonic circuits," Proc. SPIE 5355, 65-80 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited