OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Effect of the incident angle on the electric near field of a conical probe for plane wave and Gaussian beam illumination

A. V. Goncharenko and Yia-Chung Chang  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11517-11529 (2007)
http://dx.doi.org/10.1364/OE.15.011517


View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider a simple analytical model for the electric near field of a semi-infinite conical probe and apply it to study the incident angle dependence of the field for the case of side illumination by both the plane wave and the Gaussian beam. The electric near field is shown to peak when approaching the grazing incidence. In some cases, a peak can also occur at an incident angle somewhat below 90°. The results obtained are in qualitative agreement with those for a thin semi-infinite wire and previously published results for the finite-size conical probes.

© 2007 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 30, 2007
Revised Manuscript: June 13, 2007
Manuscript Accepted: June 27, 2007
Published: August 27, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
A. V. Goncharenko and Yia-Chung Chang, "Effect of the incident angle on the electric near field of a conical probe for plane wave and Gaussian beam illumination," Opt. Express 15, 11517-11529 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-18-11517


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Bouhelier, "Field-enhanced scanning near-field optical microscopy," Microsc. Res. Tech. 69, 563-579 (2006). [CrossRef] [PubMed]
  2. L. Novotny, R. X. Bean, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  3. O. J. F. Martin and C. Girard, "Controlling and tuning strong optical field gradients at a local probe microscope tip apex," Appl. Phys. Lett. 70, 705-707 (1997). [CrossRef]
  4. S. Takahashi and A. V. Zayats, "Near-Field Second-Harmonic Generation at a Metal Tip Apex," Appl. Phys. Lett. 80, 3479-3481 (2002). [CrossRef]
  5. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, J. P. Boilot, and K. Lahlil, "Apertureless near-field optical microscopy: a study of the local tip field enhancement using photosensitive Azobenzene-containing films," J. Appl. Phys. 94, 2060-2072 (2003). [CrossRef]
  6. R. Ossikovski, Q. Nguen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced Raman Spectroscopy," Phys. Rev. B 75, 045412 (2007). [CrossRef]
  7. M. J. Hagmann, "Intensification of Optical Electric Fields caused by the Interaction with a Metal Tip in Photofield Emission and Laser-Assisted Scanning Tunneling Microscopy," J. Vac. Sci. Technol. B 15, 597-601 (1997). [CrossRef]
  8. W. X. Sun and Z. X. Shen, "Optimizing the Near Field around Silver Tips," J. Opt. Soc. Am. A 20, 2254-2259 (2003). [CrossRef]
  9. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of Optical Near and Far Fields of Dielectric Apertureless Scanning Probe," Nanotechnology 17, 475-482 (2006). [CrossRef]
  10. See, e.g., M. A. Salem, A. H. Kamel, and A. V. Osipov, "Electromagnetic fields in the presence of an infinite dielectric wedge," Proc. R. Soc. A 462, 2503-2522 (2006). [CrossRef]
  11. See L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Wiley, 1994) and references therein. [CrossRef]
  12. J. J. Bowman, The Cone, in Electromagnetic and Acoustic Scattering by Simple Shapes, J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, eds., (Hemisphere, New York, 1987).
  13. J. Van Bladel, "Field singularities at the tip of a Dielectric Cone," IEEE Trans. Antennas Propag. 33, 893-895 (1985). [CrossRef]
  14. M. Idemen, "Confluent Tip Singularity of the Electromagnetic Field at the Apex of a Material Cone," Wave Motion 38, 251-277 (2003). [CrossRef]
  15. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, Jr., C. C. Neacsu, and M. B. Raschke, "Resonant-Plasmon Field enhancement from asymmetrically illuminated Conical Metallic-Probe Tips," Opt. Express 14, 2921-2931 (2006). [CrossRef] [PubMed]
  16. See, e.g., H. Bateman and A. Erdelyi, Higher Transcendental Functions, (McGraw-Hill, 1985) Vol. 1.
  17. See, e.g., R. N. Hall, "The application of non-integral Legendre functions to potential problems," J. Appl. Phys. 20, 925-931 (1949). [CrossRef]
  18. Our numerical simulations show that this statement is also valid for ν>0.
  19. A. V. Goncharenko, J. K. Wang, and Y. C. Chang, "Electric Near-Field Enhancement of a Sharp Semi-Infinite Conical Probe: Material and Cone Angle Dependence," Phys. Rev. B 74, 235442 (2006). [CrossRef]
  20. W. P. Dyke, J. K. Trolan, W. W. Dolan, and G. Barnes, "The Field Emitter: Fabrication, Electron Microscopy, and Electric Field Calculations," J. Appl. Phys. 24, 570-576 (1953). [CrossRef]
  21. J. C. Wiesner and T. E. Everhart, "Point-Cathode Electron Sources - Electron Optics of the Initial Diode Region," J. Appl. Phys. 44, 2140-2148 (1973). [CrossRef]
  22. The "bowling" pin shape can be also of interest in its own right because such a geometry can be formed by sputter coating a standard dielectric probe with a metal, see, e.g., D. Hu, M. Micic, N. Klymyshyn, Y. D. Suh, and H. P. Lu, "Correlated Topographic and Spectroscopic Imaging beyond Diffraction limit by Atomic Force Microscopy Metallic Tip-Enhanced Near-Field Fluorescence Lifetime Microscopy," Rev. Sci. Instrum. 74, 3347-3355 (2003). [CrossRef]
  23. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, "Analysis of Vector Gaussian Beam Propagation and the Validity of Paraxial and Spherical Approximations," J. Opt. Soc. Am. A 19, 404-412 (2002). [CrossRef]
  24. P. C. Chaumet, "Fully vectorial highly nonparaxial beam close to the waist," J. Opt. Soc. Am. A 23, 3197-3202 (2006). [CrossRef]
  25. Em. E. Kriezis, P. K. Pandelakis, and A. G. Papagiannakis, "Diffraction of a Gaussian Beam from a Periodic Planar Screen," J. Opt. Soc. Am. A 11, 630-636 (1994). [CrossRef]
  26. See, e.g., R. Cicchetti and A. Faraone, "On the optical behavior of the Electromagnetic Field excited by a Semi-Infinite Traveling-Wave Current," IEEE Trans. Antennas Propag. 53, 4015-4025 (2005). [CrossRef]
  27. C.A. Balanis, Antenna Theory. Analysis and Design (Wiley, New York, 1997).
  28. D.C. Chang, S.W. Lee, and L. Rispin, "Simple formula for current on a cylindrical receiving antenna," IEEE Trans. Antennas Propag. 26, 683-690 (1978). [CrossRef]
  29. O. J. F. Martin, C. Girard, and A. Dereux, "Generalized field propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). [CrossRef] [PubMed]
  30. N. I. Petrov, "Focusing of beams into subwavelength area in an inhomogeneous medium," Opt. Express 9, 658-673 (2001). [CrossRef] [PubMed]
  31. N. I. Petrov, "Evanescent and propagating fields of a strongly focused beam," J. Opt. Soc. Am. 20, 2385-2389 (2003). [CrossRef]
  32. C. Durkan and I. V. Shvets, "Polarization effects in Reflection-Mode Scanning Near-Field Optical Microscopy," J. Appl. Phys. 83, 1837-1843 (1998). [CrossRef]
  33. O. J. F. Martin and C. Girard, "Controlling and Tuning Strong Optical Field Gradients at a Local Probe Microscope Tip Apex," Appl. Phys. Lett. 70, 705 (1997). [CrossRef]
  34. M. S. Anderson, "Locally enhanced Raman Spectroscopy with an Atomic Force Microscope," Appl. Phys. Lett. 76, 3130-3132 (2000). [CrossRef]
  35. M. S. Anderson and W. T. Pike, "A Raman-Atomic Force Microscope for Apertureless-Near-Field Spectroscopy and Optical Trapping," Rev. Sci. Instrum. 73, 1198-1203 (2002). [CrossRef]
  36. D. Richards, "Near-Field Microscopy: throwing light on the Nanoworld," Phil. Trans. R. Soc. Lond. A 361, 2843-2857 (2003). [CrossRef]
  37. K. O. Greulich, "Single molecule studies of DNA and RNA," ChemPhysChem 6, 2458-2471 (2005). [CrossRef] [PubMed]
  38. K. C. Neuman and S. M. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  39. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  40. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  41. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, "Nano-Raman Spectroscopy with side-illumination optics," J. Raman Spectrosc. 36, 1068-1075 (2005). [CrossRef]
  42. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe Raman Spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406 (2006). [CrossRef]
  43. Q. Nguyen, R. Ossikovski, and J. Schreiber, "Contrast enhancement on Crystalline Silicon in polarized reflection mode tip-enhanced Raman Spectroscopy," Opt. Commun. 274, 231-235 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited