OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Enhancement and tunability of active plasmonic by multilayer grating coupled emission

Nan-Fu Chiu, Chun Yu, Shou-Yu Nien, Jiun-Haw Lee, Chieh-Hsiung Kuan, Kuang-Chong Wu, Chih-Kung Lee, and Chii-Wann Lin  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11608-11615 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of coupled mode surface plasmon polaritons (SPPs) on the active emission of a nanostructure grating with organic semiconductor material, Alq3, on the surface was investigated in this study. We report surface plasmon grating coupled emission (SPGCE) from excited organic layer on metal grating in both organic/metal (2-Layer) and organic/metal/organic/metal (4-Layer) structures. The dispersion relation was obtained from angle-resolved photoluminescence measurement. The resultant emission intensity can have up to 6 times enhancement on the 4-Layer device and the Full-Width Half-Maximum (FWHM) is less than 50 nm. The combination of SPPs on organic/metal interface allows specific directional emission and color appearance of Alq3 fluorophores. Potential applications of such an active plasmonics with enhanced resonant energy emission due to interactions on the organic/metal nano-grating as biosensor were presented and discussed.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion

ToC Category:
Optics at Surfaces

Original Manuscript: July 27, 2007
Revised Manuscript: August 25, 2007
Manuscript Accepted: August 26, 2007
Published: August 28, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Nan-Fu Chiu, Chun Yu, Shou-Yu Nien, Jiun-Haw Lee, Chieh-Hsiung Kuan, Kuang-Chong Wu, Chih-Kung Lee, and Chii-Wann Lin, "Enhancement and tunability of active plasmonic by multilayer grating coupled emission," Opt. Express 15, 11608-11615 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988). [PubMed]
  2. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902). [PubMed]
  3. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968). [CrossRef] [PubMed]
  4. E. Kretschmann, "The determination of the Optical Constants of Metals by Excitation of Surface Plasmons," Z. Phys. 241, 313-324 (1971). [CrossRef] [PubMed]
  5. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003). [CrossRef]
  6. R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film." Phys. Rev. Lett. 30, 2838-2841 (1986). [CrossRef] [PubMed]
  7. D. K. Gifford and D. G. Hall, "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315-4317 (2002). [CrossRef] [PubMed]
  8. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004). [CrossRef]
  9. J. Feng, T. Okamoto, J. Simonen, and S. Kawata, "Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons," Appl. Phys. Lett. 90, 081106 (2007). [CrossRef] [PubMed]
  10. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, "Directional surface Plasmon-coupled emission: a new method for high sensitivity detection." Biochem. Biophys. Res. Commun. 307, 435-439 (2003). [CrossRef] [PubMed]
  11. I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission." Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  12. T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. akamatsu, "Emission light properties from Adrhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations," Mater. Res. Soc. Symp. 660, 1-6 (2001). [PubMed]
  13. K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato, and F. Kaneko, "Surface plasmon emission light property due to molecular luminescence and molecular interaction," J. Appl. Phys. 44, 599-603 (2005). [PubMed]
  14. G. Winter and W. L. Barnes, "Emission of light through thin silver films via near-field coupling to surface plasmon polaritons," Appl. Phys. Lett. 88, 051109 (2006). [CrossRef] [PubMed]
  15. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  16. S. C. Kitson, W. L. Barnes, J. R. Sambles, "Photoluminescence from dye molecules on silver gratings," Opt. Commun. 122, 147-154 (1996). [CrossRef] [PubMed]
  17. J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, "Surface plasmon polariton modified emission of erbium in a metallodielectric grating," Appl. Phys. Lett. 83, 30-32 (2003). [CrossRef] [PubMed]
  18. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006). [CrossRef] [PubMed]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  20. I. Pockrand and A. Brillante, "Nonradiative decay of excited molecles near a metal surface," Chem. Phys. Lett. 69, 499-504 (1980). [CrossRef]
  21. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, "Readiative decay Engineering 2: effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer," Anal. Biochem. 301, 261-277 (2002). [CrossRef] [PubMed]
  22. C.-W. Lin, K.-P. Chen, S.-M. Lin, C.-K. Lee," Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sens. Actuators B 113, 169-176 (2006). [CrossRef]
  23. C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S.-M. Lin, X.-J Shi, C.-K. Lee, "Admittance loci design method for multilayer surface plasmon resonance devices," Sens. Actuators B 117, 219-229 (2006). [CrossRef] [PubMed]
  24. C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, C.-C. Yang, "Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine," Opt. Quantum Electron 37, 1423-1437 (2005). [CrossRef] [PubMed]
  25. J. Homola, I. Koudela, S. S. Yee," Surface plasmon resonance sensors based on diffraction grations and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999). [CrossRef] [PubMed]
  26. D. Sarid, "Long-range Surface-Plasma Waves on very Thin Metal Films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  27. P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited