OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Multifocal multiphoton microscopy based on multianode photomultiplier tubes

Ki Hean Kim, Christof Buehler, Karsten Bahlmann, Timothy Ragan, Wei-Chung A. Lee, Elly Nedivi, Erica L. Heffer, Sergio Fantini, and Peter T. C. So  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11658-11678 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multifocal multiphoton microscopy (MMM) enhances imaging speed by parallelization. It is not well understood why the imaging depth of MMM is significantly shorter than conventional single-focus multiphoton microscopy (SMM). In this report, we show that the need for spatially resolved detectors in MMM results in a system that is more sensitive to the scattering of emission photons with reduced imaging depth. For imaging depths down to twice the scattering mean free path length of emission photons (2×lems), the emission point spread function (PSFem) is found to consist of a narrow, diffraction limited distribution from ballistic emission photons and a broad, relatively low amplitude distribution from scattered photons. Since the scattered photon distribution is approximately 100 times wider than that of the unscattered photons at 2×lems, image contrast and depth are degraded without compromising resolution. To overcome the imaging depth limitation of MMM, we present a new design that replaces CCD cameras with multi-anode photomultiplier tubes (MAPMTs) allowing more efficient collection of scattered emission photons. We demonstrate that MAPMT-based MMM has imaging depth comparable to SMM with equivalent sensitivity by imaging tissue phantoms, ex vivo human skin specimens based on endogenous fluorophores, and green fluorescent protein (GFP) expressing neurons in mouse brain slices.

© 2007 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:

Original Manuscript: March 28, 2007
Revised Manuscript: August 15, 2007
Manuscript Accepted: August 15, 2007
Published: August 29, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Ki Hean Kim, Christof Buehler, Karsten Bahlmann, Timothy Ragan, Wei-Chung A. Lee, Elly Nedivi, Erica L. Heffer, Sergio Fantini, and Peter T. C. So, "Multifocal multiphoton microscopy based on multianode photomultiplier tubes," Opt. Express 15, 11658-11678 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248,73-76 (1990). [CrossRef] [PubMed]
  2. J. Grutzendler, N. Kasthuri, and W.-B. Gan, "Long-term dendritic spine stability in the adult cortex," Nature 420,812-816 (2002). [CrossRef] [PubMed]
  3. B. Lendvai, E. A. Stern, B. Chen, and K. Svoboda, "Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo," Nature 404,876-881 (2000). [CrossRef] [PubMed]
  4. W. C. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. C. So, and E. Nedivi, "Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex," PLoS Biol. 4e29 (2005).
  5. T. P. Padera, B. R. Stoll, P. T. C. So, and R. K. Jain, "Conventional and High-Speed Intravital Multiphoton Laser Scanning Microscopy of Microvasculature, Lymphatics, and Leukocyte.Endothelial Interactions," Molecular Imaging 1,9-15 (2002). [CrossRef]
  6. K. Konig, and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8,432-439 (2003). [CrossRef] [PubMed]
  7. M. J. Koehler, K. Konig, P. Elsner, R. Buckle, and M. Kaatz, "In vivo assessment of human skin aging by multiphoton laser scanning tomography," Opt. Lett. 31,2879-2881 (2006). [CrossRef] [PubMed]
  8. R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, "Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes," J. Neurophysiol. 92,609-621 (2004). [CrossRef] [PubMed]
  9. T. Ragan, K. H. Kim, K. Bahlmann, and P. T. C. So, "Two-photon tissue cytometry," Methods Cell Biol 75,23-39 (2004). [CrossRef] [PubMed]
  10. B. Yu, K. H. Kim, P. T. C. So, D. Blankschtein, and R. Langer, "Topographic Heterogeneity in Transdermal Transport revealed by High-Speed Two-Photon Microscopy: determination of representative skin sample sizes," J. Invest. Dermatol. 118,1085-1088 (2002). [CrossRef] [PubMed]
  11. D. A. Sipkins, X. Wei, J. W. Wu, J. M. Runnels, D. Côté, T. K. Means, A. D. Luster, D. T. Scadden, and C. P. Lin, "In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment," Nature 435,969-973 (2005). [CrossRef] [PubMed]
  12. K. H. Kim, C. Buehler, and P. T. C. So, "High-speed two-photon scanning microscope," Appl. Opt. 38,6004-6009 (1999). [CrossRef]
  13. G. Y. Fan, H. Fujisaki, A. Miyawaki, R.-K. Tsay, R. Y. Tsien, and M. H. Ellisman, "Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with Cameleons," Biophy. J. 78,2412-2420 (1999). [CrossRef]
  14. G. C. Cianci, J. Wu, and K. M. Berland, "Saturation modified point spread functions in two-photon microscopy," Microsc Res Tech 64,135-141 (2004). [CrossRef] [PubMed]
  15. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol 21,1369-1377 (2003). [CrossRef] [PubMed]
  16. V. Iyer, B. E. Losavio, and P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8,460-471 (2003). [CrossRef] [PubMed]
  17. G. D. Reddy, and P. Saggau, "Fast three-dimensional laser scanning scheme using acousto-optic deflectors," J. Biomed. Opt. 10,064038 (2005). [CrossRef]
  18. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, "Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism," Opt. Lett. 31,1091-1093 (2006). [CrossRef] [PubMed]
  19. W. Goebel, B. M. Kampa, and F. Helmchen, "Imaging cellular network dynamics in three dimensions using fast 3D laser scanning," Nat. Methods 473-79 (2007). [CrossRef]
  20. J. Bewersdorf, R. Pick, and S. W. Hell, "Multifocal multiphoton microscopy," Opt. Lett. 23,655-657 (1998). [CrossRef]
  21. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, "Real time two-photon absorption microscopy using multi point excitation," J. Micros.-Oxf. 192,217-226 (1998). [CrossRef]
  22. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, "High efficiency beam splitter for multifocal multiphoton microscopy," J. Microsc 201,368-376 (2000). [CrossRef]
  23. R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, and M. Sauer, "Application of multiline two-photon microscopy to functional in vivo imaging," J. Neurosci. Methods 151,276-286 (2006). [CrossRef] [PubMed]
  24. J. E. Jureller, H. Y. Kim, and N. F. Scherer, "Stochastic scanning multiphoton multifocal microscopy," Opt. Express 14,3406-3414 (2006). [CrossRef] [PubMed]
  25. M. Gu, Principles of three-dimensional imaging in confocal microscopes (World Scientific Pub Co Inc, 1996). [CrossRef]
  26. A. Egner, and S. W. Hell, "Time multiplexing and parallelization in multifocal multiphoton microscopy," J. Opt. Soc. Am. A 17,1192-1201 (2000). [CrossRef]
  27. X. Gan, and M. Gu, "Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation," Appl. Opt. 39,1575-1579 (2000). [CrossRef]
  28. C. M. Blanca, and C. Saloma, "Monte Carlo analysis of two-photon fluorescence imaging through a scattering medium," Appl. Opt. 37,8092-8102 (1998). [CrossRef]
  29. E. Beaurepaire, and J. Mertz, "Epifluorescence collection in two-photon microscopy," Appl. Opt. 41,5376-5382 (2002). [CrossRef] [PubMed]
  30. J. Ying, F. Liu, and R. R. Alfano, "Spatial distribution of two-photon-excited fluorescence in scattering media," Appl. Opt. 38,224-229 (1999). [CrossRef]
  31. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39,1194-1201 (2000). [CrossRef]
  32. C. Y. Dong, K. Koenig, and P. T. C. So, "Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium," J. Biomed. Opt. 8,450-459 (2003). [CrossRef] [PubMed]
  33. M. Oheim, E. Beaurepaire, E. Chaigneau, Jerome Mertz, and S. Charpak, "Two-photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neuro. Method. 111,29-37 (2001). [CrossRef]
  34. S. Fantini, M. A. Franceschini, and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11,2128-2138 (1994). [CrossRef]
  35. C. Buehler, K. H. Kim, U. Greuter, N. Schlumpf, and P. T. C. So, "Single-photon counting multicolor multiphoton fluorescence microscope " J. Fluoresc. 15,41-51 (2005). [CrossRef] [PubMed]
  36. P. T. C. So, H. Kim, and I. E. Kochevar, "Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures," Opt. Express 3,339-350 (1998). [CrossRef] [PubMed]
  37. B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, and E. Gratton, "Mitigating thermal mechanical damage potential during two-photon dermal imaging," J. Biomed. Opt. 9,1265-1270 (2004). [CrossRef] [PubMed]
  38. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, "Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy," Opt. Express 7,273-279 (2000). [CrossRef] [PubMed]
  39. G. Feng, R. H. Mellor, M. Bernstein, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, "Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP," Neuron 28,41-51 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited