OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Theory of resonantly enhanced near-field imaging

Mankei Tsang and Demetri Psaltis  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 11959-11970 (2007)
http://dx.doi.org/10.1364/OE.15.011959


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the fundamental issues of power transfer and far-field retrieval of subwavelength information in resonantly enhanced near-field imaging systems. It is found that high-quality resonance of the imaging system, such as that provided by dielectric resonators, can drastically enhance the power transfer from the object to the detector or the working distance. The optimal power transfer condition is shown to be the same as the critical coupling condition for resonators. The combination of a dielectric planar resonator with a solid immersion lens is proposed to project resonantly enhanced near-field spatial frequency components into the far field with the same resolution limit as that for solid immersion microscopy, but with much improved signal power throughput or working distance for resonant spatial frequencies.

© 2007 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(230.5750) Optical devices : Resonators
(230.7400) Optical devices : Waveguides, slab
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: August 1, 2007
Revised Manuscript: August 31, 2007
Manuscript Accepted: August 31, 2007
Published: September 5, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Mankei Tsang and Demetri Psaltis, "Theory of resonantly enhanced near-field imaging," Opt. Express 15, 11959-11970 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-19-11959


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992). [CrossRef] [PubMed]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  4. N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  5. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  6. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative-refractive-index materials," Phys. Rev. E 70, 035602(R) (2004).
  7. M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  9. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  10. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
  11. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
  12. M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides," Opt. Lett. 31, 2741-2743 (2006). [CrossRef] [PubMed]
  13. M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides: erratum," Opt. Lett. 32, 86 (2007). [CrossRef]
  14. R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).
  15. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321 (2000). [CrossRef]
  16. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  17. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  18. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  19. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999). [CrossRef]
  20. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005). [CrossRef] [PubMed]
  21. I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
  22. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006).
  23. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  24. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  25. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).
  27. D. F. Edwards and E. Ochoa, "Infrared refractive index of diamond," J. Opt. Soc. Am. 71, 607-608 (1981), and references therein. [CrossRef]
  28. C. D. Clark, P. J. Dean, and P. V. Harris, "Intrinsic edge absorption in diamond," Proc. R. Soc. London, Ser. A 277, 312-329 (1964). [CrossRef]
  29. S. A. Ramakrishna and J. B. Pendry, "Removal of absorption and increase in resolution in a near-field lens via optical gain," Phys. Rev. B 67, 201101(R) (2003).
  30. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004). [CrossRef] [PubMed]
  31. A. Yariv, Quantum Electronics (Wiley, New York, 2001).
  32. M. Shinoda et al., "High-density near-field readout using diamond solid immersion lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006). [CrossRef]
  33. E. J. Cand`es, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489-509 (2006). [CrossRef]
  34. S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
  35. S. Ruschin and A. Leizer, "Evanescent Bessel beams," J. Opt. Soc. Am. A 15, 1139-1143 (1998). [CrossRef]
  36. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).
  37. P. J. Reece, V. Garc’es-Ch’avez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006). [CrossRef]
  38. A. Karalis, J. D. Joannopoulos, and M. Soljači’c, "Efficient wireless non-radiative mid-range energy transfer," e-print arXiv:physics/0611063v2 (Ann. Phys., in press).
  39. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljači’c, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-86 (2007). [CrossRef] [PubMed]
  40. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef] [PubMed]
  41. M. Tsang, "Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography," Phys. Rev. A 75, 043813 (2007).
  42. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006). [CrossRef]
  43. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75, 4064-4066 (1999). [CrossRef]
  44. M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, "High-density near-field readout using solid immersion lens made of KTaO3 monocrystal," Jpn. J. Appl. Phys. 45, 1332-1335 (2006).
  45. M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855-1858 (1991). [CrossRef] [PubMed]
  46. V. Anant, M. Radmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, "Pumped quantum systems: Immersion fluids of the future?" J. Vac. Sci. Technol. B 23, 2662-2667 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited