OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

A tomographic approach to inverse Mie particle characterization from scattered light

Jules S. Jaffe  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12217-12229 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The problem of computing the internal electromagnetic field of a homogeneous sphere from the observation of its scattered light field is explored. Using empirical observations it shown that, to good approximation for low contrast objects, there is a simple Fourier relationship between a component of the internal E-field and the scattered light in a preferred plane. Based on this relationship an empirical algorithm is proposed to construct a spherically symmetric particle of approximately the same diameter as the original, homogeneous, one. The size parameter (ka) of this particle is then estimated and shown to be nearly identical to that of the original particle. The size parameter can then be combined with the integrated power of the scatter in the preferred plane to estimate refractive index. The estimated values are shown to be accurate in the presence of moderate noise for a class of size parameters.

© 2007 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.3200) Scattering : Inverse scattering
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: June 21, 2007
Revised Manuscript: August 27, 2007
Manuscript Accepted: September 1, 2007
Published: September 11, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Jules S. Jaffe, "A tomographic approach to inverse mie particle characterization from scattered light," Opt. Express 15, 12217-12229 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, Seventh Edition, 2003).
  2. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles, (Academic Press, 2000).
  3. P. J. Wyatt, "Differential light scattering: a physical method for identifying living bacterial cells," Appl. Opt. 7, 1879-1896 (1968). [CrossRef] [PubMed]
  4. D. Carlton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, (Springer-Verlag, Berlin, 1998).
  5. P. C. Chaumet, K. Belkebir, and A. Sentenac, "Three-dimensional sub wavelength optical imaging using the coupled dipole method," Phys. Rev. B,  69 (245405): 1-7 (2004). [CrossRef]
  6. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, (Society of Industrial and Applied Mathematics, 2001). [CrossRef]
  7. V. V. Berdnik and V. A. Loiko, "Particle sizing by multiangle light-scattering data using the high-order neural networks," J. Quant. Spectrosc. Radiat. Transf. 100, 55-63 (2006). [CrossRef]
  8. J. Everitt and I. K. Ludlow, "Particle sizing using methods of discrete Legendre analysis," Biochem Soc. Trans. 19, 504-5 (1991). [PubMed]
  9. K. A. Semyanov, P. A. Tarasov A. E. Zharinov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Single-particle sizing from light scattering by spectral decomposition," Appl. Opt. 43, 5110-5115 (2004). [CrossRef] [PubMed]
  10. P. H. Faye, "Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles," Meas. Sci. Technol. 9, 141-149 (1998). [CrossRef]
  11. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, "Characterizing and monitoring aerosols by light scattering," Opt. Lett. 28, 589-591 (2003). [CrossRef] [PubMed]
  12. B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, "Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements," Opt. Express 14, 12473-12484 (2006). [CrossRef] [PubMed]
  13. D. R. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, (1983).
  14. H. C. Van de Hulst, Light Scattering by Small Particles, (Dover, 1981).
  15. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, Cambridge, 2002).
  16. A. Taflove, Computational Electrodynamics: The Finite-difference Time-domain Method, (Artech House, Boston, MA, 1995).
  17. B. T. Draine, "The Discrete-dipole approximation and its application to the interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  18. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. 11, 1491-1499 (1994). [CrossRef]
  19. I. K. Ludlow and J. Everitt, "Inverse Mie Problem," J. Opt. Soc. Am. A. 17, 2229 - 2235 (2000). [CrossRef]
  20. T. L. Blundell and L. N. Johnson, Protein Crystallography, (Academic Press, 1976).
  21. A. J. Devaney, "Inversion formula for inverse scattering within the Born approximation," Opt. Lett. 7, 111-112 (1982). [CrossRef] [PubMed]
  22. A. C. Lavery, T. K. Stanton, D. E. McGehee, and D. Z Chu, "Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton," J. Acous. Soc. Am 111, 1197-1210 (2002). [CrossRef]
  23. P. L. D. Roberts and J. S. Jaffe, "Multiple angle acoustic classification of zooplankton," J. Acoust. Soc. Am. 121, 2060-2070 (2007). [CrossRef]
  24. H. R. Gordon, "Rayeigh-Gans scattering approximation: surprisingly useful for understanding backscatter from disk-like particles," Opt. Express 15, 5572-5588 (2007). [CrossRef] [PubMed]
  25. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen. S. A. McCormick and R, R. Alfano, "Bacteria Size Determination by Elastic Light Scattering," IEEE J. Sel. Top. Quantum Electron. 9, 277-287 (2003). [CrossRef]
  26. A. Lompado, "Light Scattering by a Spherical Particle," http://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.html>
  27. C. C. Dobson and J. W. L. Lewis, "Survey of the Mie Problem Source Function," J. Opt. Soc. Am. A 6, 463-466 (1989). [CrossRef]
  28. Q. Fu and W. Sun, "Mie theory for light scattering by a spherical particle in an absorbing medium," Appl. Opt. 9, 1354-1361 (2001). [CrossRef]
  29. A. V. Oppenheim, R. W. Schaefer, and J. R. Buck, Discrete-Time Signal Processing A. V. Oppenheim, ed., (Prentice Hall Signal Processing Series, 1999) 2nd Edition.
  30. C. Matzler, "Matlab codes for Mie Scattering and Absorption," http://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.htmla>
  31. W. Rysakov and M. Ston, "Light scattering by spheroids," J. Quant. Spectrosc. Radiat. Transf. 69, 651-665 (2001). [CrossRef]
  32. V. M. Rysakov, "light scattering by "soft" particles of arbitrary shape and size: II-Arbitrary orientation of particles in the space," J. Quant. Spectrosc. Radiat. Transf. 98, 85-100 (2006). [CrossRef]
  33. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  34. L. M. Shulman, "Analysis of polarimetric data by solving the inverse scattering problem," Quant. Spectrosc. Radiat. Transf. 88, 243-256 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited