OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers

Haiyang Tang, Huilu Yao, Guiwen Wang, Yun Wang, Yong-qing Li, and Meifu Feng  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12708-12716 (2007)
http://dx.doi.org/10.1364/OE.15.012708


View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Raman spectroscopy is a vibration spectroscopic technique that has been widely used to probe biochemical changes of biological sample such as tumor tissue, blood cells, bacteria and yeast. Here, we applied near-infrared Raman spectroscopy to analyze the chemical composition changes of intact or swollen mitochondria induced by calcium ions. We used a confocal Laser Tweezers Raman Spectroscopy (LTRS) system that combined optical trapping and near infrared Raman spectroscopy to confine a single mitochondrion and consequently measure its Raman spectra following the addition of calcium ion solution. We analyzed Raman spectra of mitochondria isolated from rat liver, heart muscle and kidney, respectively. The major Raman peaks at 1654, 1602, 1446, 1301 and 1226 cm−1 were observed from individual intact mitochondria. We examined the differences in near infrared spectra between intact and Ca2+ damaged mitochondria. We found that after the exposure of the intact mitochondria to the 100 μM Ca2+ solution the band of 1602 cm−1 decreased very rapidly in the first period and then disappeared after 30minutes, while the intensities of the phospholipids and protein bands changed slowly in the first period and then suddenly disappeared, corresponding to the Ca2+ induced swelling process. These results demonstrate the potential of LTRS technique as a valuable tool for the study of bioactivity and molecular composition of mitochondria.

© 2007 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 5, 2007
Revised Manuscript: August 31, 2007
Manuscript Accepted: September 4, 2007
Published: September 20, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Haiyang Tang, Huilu Yao, Guiwen Wang, Yun Wang, Yong-qing Li, and Meifu Feng, "NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers," Opt. Express 15, 12708-12716 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-20-12708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Whittaker and S. M. Danks, Mitochondria: structure, function, and assembly (London; New York; Longman, 1978).
  2. L. A. Pon andd E. A. Schon. Mitochondria (San Diego, Calif., Academic Press, c2001).
  3. C. Batandier, E. Fontaine, C. Keriel, and X. M. Leverve. "Determination of mitochondrial reactive oxygen species: methodological aspects," J Cell Mol Med. 6, 175-87. (2002). [CrossRef] [PubMed]
  4. S. S. Smaili, Y. T. Hsu, R. J. Youle, and J. T. Russell, "Mitochondria in Ca2+ signaling and apoptosis," J. Bioenerg. Biomembr. 32, 35-46 (2000). [CrossRef]
  5. J. B. Chappell and A. R. Crofts, "Calcium ion accumulation and volume changes of isolated liver mitochondria. Calcium ion-induced swelling," Biochem. J. 95, 378-386 (1965). [PubMed]
  6. K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, "Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium," Anal. Chem. 72, 12-19 (2000). [CrossRef] [PubMed]
  7. W. H. Nelson, R. Manoharan, and J. F. Sperry, "UV resonance Raman studies of bacteria," Appl. Spectrosc. Rev. 27, 67-124 (1992). [CrossRef]
  8. K. C. Schuster, E. Urlaub, and J. R. Gapes, "Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture," J. Microbiol Meth. 42, 29-38 (2000). [CrossRef]
  9. W. H. Nelson and J. F. Sperry, "Modern techniques for rapid microbiological analysis," (VCH Publishers, New York, N.Y. 1991), pp. 97-143.
  10. P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. Wright, "Optical diagnostics in urology: current applications and future prospects," BJU Int. 92, 400-407 (2003). [CrossRef] [PubMed]
  11. C. Otto, N. M. Sijtsema, and J. Greve, "Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes," Eur. Biophys. J. 27, 582-589 (1998). [CrossRef] [PubMed]
  12. B. R. Wood, B. Tait, and D. McNaughton, "Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte," Biochem. Biophys.Acta. 1539, 58-70 (2001). [CrossRef] [PubMed]
  13. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, "Studying single living cells and chromosomes by confocal Raman microscopy," Nature 347, 301-303 (1990). [CrossRef] [PubMed]
  14. L. P. Choo-Smith, H. G. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Jr. Robinson, H. A. Bruining, G. J. Puppels, "Medical applications of Raman spectroscopy: from proof of principle to clinical implementation," Biopolymers. 67, 1-9 (2002). [CrossRef] [PubMed]
  15. D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman, T. Kitagawa, "Selective resonance Raman observation of the "607 nm" form generated in the reaction of oxidized cytochrome C oxidase with hydrogen peroxide," J Biol Chem. 269, 29385-29388 (1994). [PubMed]
  16. S. Berezhna, H. Wohlrab, P. M. Champion, "Resonance Raman investigations of cytochrome C conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria," Biochemistry. 42, 6149-6158 (2003) [CrossRef] [PubMed]
  17. T. Toshinari, S. Kuroiwa, T. Ogura, and S Yoshikawa, "Probing the oxygen activation reaction in intact whole mitochondria through analysis of molecular vibrations," J. Am. Chem. Soc. 127, 9970-9971 (2005) [CrossRef]
  18. G. J. Puppels, J. H. Olminkhof, G. M. Segers-Nolten, C. Otto, F. F. Mul de, and J. Greve, "Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light," Exp Cell Res. 195, 361-367 (1991). [CrossRef] [PubMed]
  19. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, "Prospects for in vivo Raman spectroscopy," Phys. Med. Biol. 45, R1-59 (2000). [CrossRef]
  20. Y. Huang, T. Karashima, M. Yamanoto, T. Ogura and H. Hamaguhci, "Raman spectroscopic signature of life in a living yeast cell," J. Raman Spectrosc. 35, 525-526 (2004). [CrossRef]
  21. Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguhci. "Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy," Biochemistry 44, 10009-10019. (2005). [CrossRef] [PubMed]
  22. A. Ashkin, K. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  23. M. P. Sheetz, Methods in Cell Biology, (Academic Press, San Diego, Calif., 1998) Vol. 55.
  24. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science. 283, 1689-1695 (1999). [CrossRef] [PubMed]
  25. K. Visscher, M. J. Schnitzer, and S. M. Block, "Single kinesin molecules studied with a molecular force clamp," Nature. 400, 184-189 (1999). [CrossRef] [PubMed]
  26. C. A. Xie, M. A. Dinno, and Y. Q. Li, "Near-infrared Raman spectroscopy of single optically trapped biological cells," Opt. Lett. 27, 249-251 (2002). [CrossRef]
  27. C. A. Xie, and Y. Q. Li, "Raman spectra and optical trapping of highly refractive and nontransparent particles," Appl. Phys. Lett. 81, 951-953 (2002). [CrossRef]
  28. C. A. Xie, Y.Q. Li, W. Tang, and R. J. Newton, "Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy," J. Appl. Phys. 94, 6138-6142 (2003) [CrossRef]
  29. C. A. Xie, J. Mace, M.A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, P. J. Gemperline, "Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy," Anal. Chem. 77, 4390-4397 (2005). [CrossRef] [PubMed]
  30. D. Chen, S. S. Huang, and Y.Q. Li, "Real-time Detection of Kinetic Germination and Heterogeneity of Single Bacillus Spores by Laser Tweezers Raman Spectroscopy," Anal. Chem. 78, 6936-6941 (2006). [CrossRef] [PubMed]
  31. C. A. Xie, C. Goodman, M. A. Dinno, and Y. Q. Li, "Real-time Raman spectroscopy of optically trapped living cells and organelles," Opt. Express 12, 6209-6214 (2004). [CrossRef]
  32. D. Johnson and H. Lardy, "Isolation of liver or kidney mitochondria," Methods. Enzymol. 10, 94-96 (1967). [CrossRef]
  33. E. O. Fuller, D. I. Goldberg, J. W. Starnes, L. M. Sacks, and M. Delivoria-Papadopoulos, "Mitochondrial respiration following acute hypoxia in the perfused rat heart," J. Mol. Cell. Cardiol. 17, 71-81 (1985). [CrossRef] [PubMed]
  34. S. Fleischer, G. Rouser, B. Fleischer, A. Casu, and G. Kritchevsky, "Lipid composition of mitochondria from bovine heart, liver and kidney," J. Lipid. Res. 8, 170 (1967). [PubMed]
  35. Y. Naito, A. Toh-e, and H. Hamaguchi, "In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell," J. Raman. Spectrosc. 36, 837-839 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited