OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer

Siyka I. Shopova, Jay M. Cupps, Po Zhang, Edward P. Henderson, Scott Lacey, and Xudong Fan  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12735-12742 (2007)
http://dx.doi.org/10.1364/OE.15.012735


View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created in the donor and transferred to the acceptor through the fluorescence resonant energy transfer (FRET), whose emission is coupled into the WGM. Due to the high energy transfer efficiency and high Q-factors, the acceptor exhibits a lasing threshold as low as 0.3 μJ/mm2. We further analyze the energy transfer mechanisms and find that non-radiative Förster transfer is the dominant effect to support the acceptor lasing. FRET lasers using cascade energy transfer and using quantum dots (QDs) as the donor are also presented. Our study will not only lead to development of novel microfluidic lasers with low lasing thresholds and excitation/emission flexibility, but also open an avenue for future laser intra-cavity bio/chemical sensing.

© 2007 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2050) Lasers and laser optics : Dye lasers
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.5750) Optical devices : Resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 20, 2007
Revised Manuscript: September 13, 2007
Manuscript Accepted: September 18, 2007
Published: September 20, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Siyka I. Shopova, Jay M. Cupps, Po Zhang, Edward P. Henderson, Scott Lacey, and Xudong Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-20-12735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  3. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006). [CrossRef]
  4. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003). [CrossRef]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006). [CrossRef] [PubMed]
  6. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006). [CrossRef] [PubMed]
  7. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007). [CrossRef] [PubMed]
  8. Z. Li and D. Psaltis, "Optofluidic Distributed Feedback Dye Lasers," J. Sel. Top. Quantum Electron. 13, 185-193 (2007). [CrossRef]
  9. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499 - 501 (1984). [CrossRef] [PubMed]
  10. H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, "Levitated droplet dye laser," Opt. Express 14, 4374-4379 (2006). [CrossRef] [PubMed]
  11. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, "Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface," Opt. Lett. 32, 2197-2199 (2007). [CrossRef] [PubMed]
  12. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, "Core-resonance capillary-fiber whispering-gallery-mode laser," Opt. Lett. 17, 1280-1282 (1992). [CrossRef] [PubMed]
  13. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000). [CrossRef] [PubMed]
  14. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005). [CrossRef]
  15. I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006). [CrossRef] [PubMed]
  16. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007). [CrossRef]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic/Plenum Publishers, New York City, New York, 1999).
  18. T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).
  19. C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971). [CrossRef]
  20. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997). [CrossRef]
  21. M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997). [CrossRef]
  22. M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986). [CrossRef]
  23. S. Arnold and L. M. Folan, "Energy transfer and the photon lifetime within an aerosol particle," Opt. Lett. 14, 387-389 (1989). [CrossRef] [PubMed]
  24. S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006). [CrossRef] [PubMed]
  25. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006). [CrossRef] [PubMed]
  26. A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006). [CrossRef]
  27. C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005). [CrossRef] [PubMed]
  28. S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005). [CrossRef] [PubMed]
  29. R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005). [CrossRef] [PubMed]
  30. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002). [CrossRef]
  31. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005). [CrossRef] [PubMed]
  32. A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited