OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Selective metallization on insulator surfaces with femtosecond laser pulses

Jian Xu, Yang Liao, Huidan Zeng, Zenghui Zhou, Haiyi Sun, Juan Song, Xinshun Wang, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12743-12748 (2007)
http://dx.doi.org/10.1364/OE.15.012743


View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report selective metallization on surfaces of insulators (glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 20, 2007
Manuscript Accepted: September 17, 2007
Published: September 20, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jian Xu, Yang Liao, Huidan Zeng, Zenghui Zhou, Haiyi Sun, Juan Song, Xinshun Wang, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa, "Selective metallization on insulator surfaces with femtosecond laser pulses," Opt. Express 15, 12743-12748 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-20-12743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006). [CrossRef]
  2. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser," Opt. Lett. 28, 1144-1146 (2003). [CrossRef] [PubMed]
  3. K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005). [CrossRef]
  4. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006). [CrossRef]
  5. Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing," Opt. Lett. 29, 2007-2009 (2004). [CrossRef] [PubMed]
  6. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, " Opt. Lett.,  32, 1536-1538 (2007). [CrossRef] [PubMed]
  7. P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 4th edition (McGraw-Hill Professional Publishing, New York, 2000). [PubMed]
  8. M. Datta, T. Osaka, and J. W. Schultze, Microelectronic packaging (CRC Press, Boca Raton, 2005).
  9. K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007). [CrossRef]
  10. H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995). [CrossRef]
  11. C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001). [CrossRef]
  12. L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994). [CrossRef]
  13. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004). [CrossRef]
  14. H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001). [CrossRef]
  15. K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005). [CrossRef]
  16. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997). [CrossRef]
  17. L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004). [CrossRef]
  18. T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multi-photon laser direct writing of two-dimensional silver structures," Opt. Express 13,1275-1280 (2005). [CrossRef] [PubMed]
  19. T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006). [CrossRef]
  20. C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004). [CrossRef]
  21. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006). [CrossRef]
  22. A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006). [CrossRef] [PubMed]
  23. B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002). [CrossRef]
  24. D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006). [CrossRef]
  25. G. A. Shafeev, "Laser-assisted activation of dielectrics for electroless metal plating," Appl. Phys. A 67, 303-311 (1998). [CrossRef]
  26. T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990). [CrossRef]
  27. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004). [CrossRef] [PubMed]
  28. Y. Cheng, K. Sugioka, K. Midorikawa, and Z. Xu. "Integrating 3D photonics and microfluidic using ultrashort laser pulses," SPIE Newsroom (2006), http://spie.org/x8513.xml.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited