OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Bowtie plasmonic quantum cascade laser antenna

Nanfang Yu, Ertugrul Cubukcu, Laurent Diehl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 13272-13281 (2007)
http://dx.doi.org/10.1364/OE.15.013272


View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a bowtie plasmonic quantum cascade laser antenna that can confine coherent mid-infrared radiation well below the diffraction limit. The antenna is fabricated on the facet of a mid-infrared quantum cascade laser and consists of a pair of gold fan-like segments, whose narrow ends are separated by a nanometric gap. Compared with a nano-rod antenna composed of a pair of nano-rods, the bowtie antenna efficiently suppresses the field enhancement at the outer ends of the structure, making it more suitable for spatially-resolved high-resolution chemical and biological imaging and spectroscopy. The antenna near field is characterized by an apertureless near-field scanning optical microscope; field confinement as small as 130 nm is demonstrated at a wavelength of 7.0 μm.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 24, 2007
Revised Manuscript: September 24, 2007
Manuscript Accepted: September 26, 2007
Published: September 27, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Nanfang Yu, Ertugrul Cubukcu, Laurent Diehl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-20-13272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  2. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996). [CrossRef] [PubMed]
  3. J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, "Field enhancement of optical radiation in the nearfield of scanning probe microscope tips," Appl. Phys. A. 66, 29-34 (1998). [CrossRef]
  4. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4787-4884 (2002). [CrossRef]
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  6. N. Yu, E. Cubukcu, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic quantum cascade laser antenna," in CLEO/QELS Conference2007 (American Physical Society, IEEE Lasers and Electro-Optics Society, and Optical Society of America, 2007), paper JMA6.
  7. N. Yu, E. Cubukcu, L. Diehl, M. Belkin, K. B. Crozier, D. Bour, S. Corzine, G. Höfler, and F. Capasso, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. (unpublised). [PubMed]
  8. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004). [CrossRef]
  9. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005). [CrossRef] [PubMed]
  10. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006). [CrossRef] [PubMed]
  11. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  12. R. W. P. King, H. R. Mimno, and A. H. Wing, Transmission Lines, Antennas and Wave Guides (McGraw-Hill Book Company, 1945), Sec. 29.
  13. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (John Wiley & Sons, Inc. 1981), Chap. 5.
  14. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104 (2006). [CrossRef]
  15. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  16. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho. Phys. Today. "Quantum cascade lasers," 55, 34-40 (2002).
  17. J. W. Cooper, Spectroscopic Techniques for Organic Chemists (John Wiley and Sons, Inc. 1980), Chap. 1.
  18. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006). [CrossRef]
  19. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  20. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645-1648 (2000). [CrossRef] [PubMed]
  21. FDTD simulations were performed using a commercial software XFdtd (Remcom Inc.): http://www.remcom.com/>
  22. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  23. K. S. Kunz and R. J. Luebbers, the Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993), Chap. 8.
  24. E. D. Palik, Handbook of Optical Constants (Academic, 1985).
  25. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express (unpublished). [PubMed]
  26. R. Hillenbrand, B. Knoll, and F. Keilmann, "Pure optical contrast in scattering-type scanning near-field microscopy," J. Microsc. 202, 77-83 (2001). [CrossRef] [PubMed]
  27. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  28. M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited