OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Radiation pressure and the linear momentum of the electromagnetic field in magnetic media

Masud Mansuripur  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13502-13518 (2007)
http://dx.doi.org/10.1364/OE.15.013502


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the force of the electromagnetic radiation on linear, isotropic, homogeneous media specified in terms of their permittivity ε and permeability μ. A formula is proposed for the electromagnetic Lorentz force on the magnetization M , which is treated here as an Amperian current loop. Using the proposed formula, we demonstrate conservation of momentum in several cases that are amenable to rigorous analysis based on the classical Maxwell equations, the Lorentz law of force, and the constitutive relations. Our analysis yields precise expressions for the density of the electromagnetic and mechanical momenta inside the media that are specified by their (ε,μ) parameters. An interesting consequence of this analysis is the identification of an “intrinsic” mechanical momentum density, ½ E × M /c2, analogous to the electromagnetic (or Abraham) momentum density, ½ E × H /c2. (Here E and H are the magnitudes of the electric and magnetic fields, respectively, and c is the speed of light in vacuum.) This intrinsic mechanical momentum, associated with the magnetization M in the presence of an electric field E , is apparently the same “hidden” momentum that was predicted by W. Shockley and R. P. James nearly four decades ago.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: July 27, 2007
Revised Manuscript: September 26, 2007
Manuscript Accepted: September 27, 2007
Published: October 1, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Masud Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field in magnetic media," Opt. Express 15, 13502-13518 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-21-13502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973). [CrossRef]
  2. D. F. Nelson, "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy," Phys. Rev. A 44, 3985 (1991). [CrossRef] [PubMed]
  3. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum. tensor," Phys. Reports 52, 133-201 (1979). [CrossRef]
  4. R. Loudon, "Theory of the radiation pressure on dielectric surfaces," J. Mod. Opt. 49, 821-838 (2002). [CrossRef]
  5. R. Loudon, "Radiation pressure and momentum in dielectrics," Fortschr. Phys. 52, 1134-1140 (2004). [CrossRef]
  6. R. Loudon, S. M. Barnett, and C. Baxter, "Radiation pressure and momentum transfer in dielectrics: the photon drag effect," Phys. Rev. A 71, 063802 (2005). [CrossRef]
  7. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004). [CrossRef] [PubMed]
  8. M. Mansuripur, A. R. Zakharian, and J. V. Moloney, "Radiation pressure on a dielectric wedge," Opt. Express 13, 2064-2074 (2005). [CrossRef] [PubMed]
  9. M. Mansuripur, "Radiation pressure and the linear momentum of light in dispersive dielectric media," Opt. Express 13, 2245-2250 (2005). [CrossRef] [PubMed]
  10. M. Mansuripur, "Angular momentum of circularly polarized light in dielectric media," Opt. Express 13, 5315-5324 (2005). [CrossRef] [PubMed]
  11. M. Mansuripur, "Radiation pressure and the distribution of electromagnetic force in dielectric media," SPIE Proc. 5930, 154-160 (2005). [CrossRef]
  12. M. Mansuripur, A. R. Zakharian, and J. V. Moloney, "Equivalence of total force (and torque) for two formulations of the Lorentz law," SPIE Proc. 6326, 63260G (2006). [CrossRef]
  13. M. Mansuripur, "Radiation Pressure on Submerged Mirrors: Implications for the Momentum of Light in Dielectric Media," Opt. Express 15, 2677-2682 (2007). [CrossRef] [PubMed]
  14. B. D. H. Tellegen, "Magnetic-Dipole Models," Am. J. Phys. 30, 650 (1962). [CrossRef]
  15. S. M. Barnett and R. Loudon, "On the electromagnetic force on a dielectric medium," J. Phys. B: At. Mol. Opt. Phys. 39, S671-S684 (2006). [CrossRef]
  16. B. Kemp, T. Grzegorczyk, and J. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express 13, 9280-9291 (2005). [CrossRef] [PubMed]
  17. B. A. Kemp, J. A. Kong, and T. Grzegorczyk, "Reversal of wave momentum in isotropic left-handed media," Phys. Rev. A 75, 053810 (2007). [CrossRef]
  18. L. Vaidman, "Torque and force on a magnetic dipole," Am. J. Phys. 58, 978-983 (1990). [CrossRef]
  19. A. D. Yaghjian, "Electromagnetic forces on point dipoles," IEEE Anten. Prop. Soc. Symp. 4, 2868-2871 (1999).
  20. W. Shockley, "Hidden linear momentum related to the ?·E term for a Dirac-electron wave packet in an electric field," Phys. Rev. Lett. 20, 343-346 (1968). [CrossRef]
  21. M. Mansuripur, "Momentum of the electromagnetic field in transparent dielectric media," SPIE Proc. 6644, 664413 (2007). [CrossRef]
  22. W. Shockley and R. P. James, "Try simplest cases discovery of hidden momentum forces on magnetic currents," Phys. Rev. Lett. 18, 876-879 (1967). [CrossRef]
  23. P. Penfield and H. A. Haus, Electrodynamics of Moving Media, (MIT Press, Cambridge, 1967).
  24. R. P.  Feynman, R. B.  Leighton, and M. Sands, The Feynman Lectures on Physics, (Addison-Wesley, Reading, Massachusetts 1964) Vol. 2, Chap. 27.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited