OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography

Johan Axelsson, Jenny Svensson, and Stefan Andersson-Engels  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13574-13584 (2007)
http://dx.doi.org/10.1364/OE.15.013574


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence molecular tomography suffers from being mathematically ill-conditioned resulting in non-unique solutions to the reconstruction problem. In an attempt to reduce the number of possible solutions in the underdetermined system of equations in the reconstruction, we present a method to retrieve a spatially varying regularization map outlining the feasible inclusion position. This approach can be made very simple by including a few multispectral recordings from only one source position. The results retrieved through tissue phantom experiments imply that initial reconstructions with spatially varying priors reduces artifacts and show slightly more accurate reconstruction results compared to reconstructions using no priors.

© 2007 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 8, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: September 26, 2007
Published: October 1, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Johan Axelsson, Jenny Svensson, and Stefan Andersson-Engels, "Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography," Opt. Express 15, 13574-13584 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-21-13574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  2. B. Brooksby, S. Jiang, H. Dehghani, B. Pogue, K. Paulsen, J. Weaver, C. Kogel, and S. Poplack, "Combining near-infrared tomography resonance imaging to study in vivo and magnetic breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure," J. Biomed. Opt. 10 (2005). [CrossRef] [PubMed]
  3. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005). [CrossRef] [PubMed]
  4. H. Xu, R. Springett, H. Dehghani, B. Pogue, K. Paulsen, and J. Dunn, "Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies," Appl. Opt. 44, 2177-2188 (2005). [CrossRef] [PubMed]
  5. B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  6. R. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental Fluorescence Tomography of Tissues With Noncontact Measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  7. E. Graves, J. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomograpy," J. Opt. Soc. Am. 21, 231-241 (2004). [CrossRef]
  8. D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. 1. Theory," Appl. Opt. 36, 4587-4599 (1997). [CrossRef] [PubMed]
  9. J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, "Experimental determination of photon propagation in highly absorbing and scattering media," J. Opt. Soc. Am. 22, 546-551 (2005). [CrossRef]
  10. D. Paithankar, A. Chen, B. Pogue, M. Patterson, and E. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  11. M. O’Leary, D. Boas, X. Li, B. Chance, and A. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  12. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001). [CrossRef]
  13. A. Neumaier, "Solving ill-conditioned and singular linear systems: A tutorial on regularization," Siam Review 40, 636-666 (1998). [CrossRef]
  14. H. Dehghani, D. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Measurement 20, 87-102 (1999). [CrossRef]
  15. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005). [CrossRef] [PubMed]
  16. J. Svensson and S. Andersson-Engels, "Modeling of spectral changes for depth localization of fluorescent inclusion," Opt. Express 13, 4263-4274 (2005). [CrossRef] [PubMed]
  17. S. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999). [CrossRef]
  18. J. Swartling, A. Pifferi, A. Enejder, and S. Andersson-Engels, "Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. 20, 714-727 (2003). [CrossRef]
  19. J. Dam, T. Dalgaard, P. Fabricius, and S. Andersson-Engels, "Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements," Appl. Opt. 39, 1202-1209 (2000). [CrossRef]
  20. R. Kubin and A. Fletcher, "Fluorescence Quantum Yields of Some Rhodamine Dyes," J. Lumin. 27, 455-462 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited