OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Statistical speckle study to characterize scattering media: use of two complementary approaches

O. Carvalho, B. Clairac, M. Benderitter, and L. Roy  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13817-13831 (2007)
http://dx.doi.org/10.1364/OE.15.013817


View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckle produced by strongly-scattering media contains information about its optical properties. Statistical speckle study allows discrimination between media and enables one to characterize any change. Two approaches of the speckle phenomenon are used in the measurement of speckle produced by monodisperse-polystyrene microspheres in solution and mixtures of them: a stochastic approach based on the fractional Brownian motion and a classical frequential approach based on speckle size measurement. In this paper, we introduce an approach that contains the multi-scale aspect of the speckle; therefore it provides more information on the medium than the speckle dimension. The obtained results show that the stochastic approach allows a better samples discrimination than the classical frequential approach.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.5850) Scattering : Scattering, particles

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: June 18, 2007
Revised Manuscript: August 1, 2007
Manuscript Accepted: August 29, 2007
Published: October 5, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
O. Carvalho, B. Clairac, M. Benderitter, and L. Roy, "Statistical speckle study to characterize scattering media: use of two complementary approaches," Opt. Express 15, 13817-13831 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-21-13817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lehmann, "Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination," Appl. Opt. 38, 1144-1152 (1999). [CrossRef]
  2. R. Berlasso, F. Perz Quintian, M. A. Rebollo, C. A. Raffo and N. G. Gaggioli, "Study of speckle size of light scattered from cylindrical rough surfaces," Appl. Opt. 39, 5811-5819 (2000). [CrossRef]
  3. I. V. Fedosov and V. V. Tuchin, "The use of dynamic speckle field space-time correlation function estimates for the direction and velocity determination of blood flow," Proc. SPIE 4434, 192-196 (2001). [CrossRef]
  4. D. A. Boas and A. G. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," J. Opt. Soc. Am. A 14, 192-215 (1997). [CrossRef]
  5. J. D. Briers, G. Richard, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999). [CrossRef]
  6. D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue like phantoms," in Handbook of Biomedical Diagnostics, Valery V. Tuchin, ed., (SPIE press, Bellingham 2002) Chap. 18.
  7. J. W. Goodman, "Statistical Properties of Laser Speckle Pattern," in Laser Speckle and Related Phenomena, Vol. 9 in series Topics in Applied Physics, J. C. Dainty, ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984)
  8. L. I. Goldfisher, "Autocorrelation function and power spectral density of last-produced speckle pattern," J. Opt. Soc. Am. A 55, 247-253 (1964).
  9. M. Françon, Granularite Laser, Speckle, Application en Optique, (Masson, Paris, 1978).
  10. Q. B. Li and F. P. Chiang, "Three-dimensional of laser speckle," Appl. Opt. 31, 6287-6291 (1992). [CrossRef] [PubMed]
  11. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, G. Le Brun, "Backscattered speckle size as a function of polarization : influence of particle-size and -concentration," Opt. Express 13, 5030-5039 (2005). [CrossRef] [PubMed]
  12. Y. Piederrière, J. Le Meur, J. Cariou, J. F. Abgrall, and M. T. Blouch, "Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation," Opt. Express 12, 4596-4601 (2004). [CrossRef] [PubMed]
  13. L. Zhifand, L. Hui, and Y. Qiu, "Fractal analysis of laser speckle for measuring roughness," Proc. SPIE 6027, 470-476 (2006).
  14. C. L. Benhamou,  et al., "Fractal Analysis of radiographic Trabecular Bone Texture and Bone Mineral Density: Two Complementary Parameters Related to Osteoporotic Fractures," Journal Bone Miner. Res. 16, 697-704 (2001). [CrossRef]
  15. L. Pothuaud,  et al., "Fractal analysis of trabecular bone texture on radiographs: discriminant value in post menopausal osteoporosis," Osteoporos. Int. 8, 618-625 (1998). [CrossRef]
  16. G. M. Tosoni, A. G. Lurie, A. E. Cowan, and J.A. Burleson, "Pixel intensity and fractal analyses: detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology,  102, 235-241 (2006). [CrossRef]
  17. T. Hyon Ha,  et al. "Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder," Neurosci. Lett. 384, 172-176 (2005). [CrossRef] [PubMed]
  18. S. Guyot, M. C. Péron, and E. Deléchelle, "Spatial Speckle Characterization by Brownian Motion analysis," Phys. Rev. E 70, 046618 (2004). [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 4, pp. 124-127; Chap. 7, 340-350.
  20. P. Abry, P. Gonçalves, and P. Flandrin, Spectrum analysis and 1/f processes (Springer, Berlin, 1995).
  21. M. F. Barnsley, R.L. Devaney, B.B. Mandelbrot, H.-O. Peitgen, D. Saupe, and R. F. Voss, The science of fractal images (Springer, New-York, 1988). [CrossRef]
  22. T. D. Frank, A. Daffertshofer, PJ. Beek, "Multivariate Ornstein-Uhlenberg processes with mean field-dependent coefficients-application to postural sway," Phys. Rev. E 63, (2001).Q2
  23. A. Pentland et al. "Fractal-based description of natural scenes," IEEE Trans. Patt. Mach. Int. 6, No 6, 661-674 (1984).Q3 [CrossRef]
  24. H. Funamizu and J. Uozumi, "Generation of fractal speckles by means of a spatial light modulator," Opt. Express 15, 7415-7422 (2007). [CrossRef] [PubMed]
  25. K. Uno, J. Uozumi, and T. Asakura, "Speckle clustering in diffraction patterns of random objects under ring-slit illumination," Opt. Commun. 114, 203-210 (1995). [CrossRef]
  26. J. Uozumi, M. Ibrahim, and T. Asakura, "Fractal speckles," Opt. Commun. 156, 350-358 (1998). [CrossRef]
  27. T. L. Alexander, J. E. Harvey, and A. R. Weeks, "Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory," Appl. Opt. 33, 8240-8250 (1994). [CrossRef] [PubMed]
  28. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983).
  29. B. Gelebart,  et al., "Time- and space-resolved reflectance applied to the analysis of multi-layered turbid media," J. Opt. 28, 234-244 (1997). [CrossRef]
  30. R. Simpson,  et al., "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo Inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998). [CrossRef] [PubMed]
  31. R. V. Hogg and J. Ledolter, Engineering Statistics, (Macmillan Publishing Company, New-York, 1987).
  32. D. A. Zimnyakov, V. V. Tuchin, and A. A. Mishin, "Spatial speckle correlometry in applications to speckle structure monitoring," Appl. Opt. 36, 5594-5607 (1997). [CrossRef] [PubMed]
  33. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-135 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited